Math 26500 - Zecheng Zhang, Spring 2022

Section 2.9 Dimension and Rank

Definition: Suppose the set 4 = {by,---,b,} is a basis for a subspace H. For each
x in H, the coordinates of x relative to the basis % are the weights ¢y, --,c, such that
x = c1by +---+cpb,, and the vector in R”,

c1
x| =
Cp

1s called the coordinate vector of x (relative to B) or the B-coordinate vector of x
Remark: The main reason for selecting a basis for a subspace H, instead of merely
a spanning set, is that each vector in H can be written in only one way as a linear
combination of the basis vectors.

Example 1: The vector x is in a subspcae H with a basis % = {b,b,}, and

3 —1 3
b = 6 ,bzz 0 , X = 12
2 1 7

Find the %-coordinate vector of x.
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Definition: The dimension of a nonzero subspace H, denoted by dim(H), is the num-
ber of vectors in any basis for H. The dimension of the zero subspace {0} is defined to
be zero.

Remark: The space R" has dimension n.
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Definition: The rank of a matrix A, denoted by rank(A), is the dimension of the column

space of A.
Example 2: The echelon form of A is given, find basis for ColA and NulA, and then
state the dimensions of these subspaces. LT WA
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The Rank Theorem: If a matrix A has n columns, then rankA + dimNul(A) = n.
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The Basis Theorem: Let H be a p—dimensional subspace of R"”. Any linearly inde-
pendent set of exactly p elements in H is automatically a basis for H. Moreover, any
set of p elements of H that spans H is automatically a basis for H.
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The Invertible Matrix Theorem: Let A be an n X n matrix. Then the following state-
ments are each equivalent to the statement that A is an invertible matrix.

1. The columns of A form a basis of R”.
2. ColA =R".

3. dimColA = n.

rankA = n.

Nuld = {0}.

AN U

dimNulA = 0.

Example 3: True or False:

“vta. If Z={by,---,b,} is abasis for a subspace H and if x = c1b; +--- +c,b,, then

c1,---,cp are the coordinates of x relative to the basis %. o
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1-"‘\% Each line in R" is a one-dimensional subspace of R". + ‘ku g Vot vassk
) ()
’““c. The dimension of ColA is the number of pivot columns in A. puds o 3‘. Ya ov\a\m'

""’5’. The dimensions of ColA and NulA add up to the number of columns in A.

WY If aset of p vectors spans a p-dimensional subspace H of R", then these vectors
form a basis for H.

Example 4: If the rank of a 9 x 8 matrix A is 7, what is the dimension of the solution
space of Ax = 0.
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