Section 2.9 Dimension and Rank

Definition: Suppose the set $\mathscr{B}=\left\{\mathbf{b}_{1}, \cdots, \mathbf{b}_{p}\right\}$ is a basis for a subspace H. For each \mathbf{x} in H, the coordinates of \mathbf{x} relative to the basis \mathscr{B} are the weights c_{1}, \cdots, c_{p} such that $\mathbf{x}=c_{1} \mathbf{b}_{1}+\cdots+c_{p} \mathbf{b}_{p}$, and the vector in \mathbb{R}^{p},

$$
[\mathbf{x}]_{\mathscr{B}}=\left[\begin{array}{l}
c_{1} \\
\cdots \\
c_{p}
\end{array}\right]
$$

is called the coordinate vector of x (relative to B) or the B-coordinate vector of x Remark: The main reason for selecting a basis for a subspace H, instead of merely a spanning set, is that each vector in H can be written in only one way as a linear combination of the basis vectors.
Example 1: The vector \mathbf{x} is in a subspcae H with a basis $\mathscr{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$, and

$$
\mathbf{b}_{1}=\left[\begin{array}{l}
3 \\
6 \\
2
\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right], \mathbf{x}=\left[\begin{array}{c}
3 \\
12 \\
7
\end{array}\right]
$$

Find the \mathscr{B}-coordinate vector of \mathbf{x}.
Find $x_{1} x_{2} \in \mathbb{R}$ such that

$$
\begin{aligned}
& x_{1} \overrightarrow{b_{1}}+x_{2} \vec{b}_{2}=\vec{x} \\
& \Leftrightarrow \quad A \vec{y}=\overrightarrow{x_{1}}, \quad A=\left\{\overrightarrow{b_{1}} \quad \overrightarrow{b_{b}}\right\}, \vec{y}=\binom{x_{1}}{x_{2}}
\end{aligned}
$$

Definition: The dimension of a nonzero subspace H, denoted by $\operatorname{dim}(H)$, is the numben of vectors in any basis for H. The dimension of the zero subspace $\{\mathbf{0}\}$ is defined to be zero.
Remark: The space \mathbb{R}^{n} has dimension n.

Definition: The rank of a matrix A, denoted by $\operatorname{rank}(A)$, is the dimension of the column space of A.
Example 2: The echelon form of A is given, find basis for $\operatorname{Col} A$ and $\mathrm{Nul} A$, and then state the dimensions of these subspaces.
(1) Woof: col spore of
A is the cat of $A=\left[\begin{array}{cccc}1 & 3 & 2 & -6 \\ 3 & 9 & 1 & 5 \\ 2 & 6 & -1 & 9 \\ 5 & 15 & 0 & 14\end{array}\right] \sim\left[\begin{array}{cccc}11 & 3 & 3 & 2 \\ 0 & 0 & 5 & -7 \\ 0 & 0 & 0 & -5 \\ 0 & 0 & 0 & 0\end{array}\right]$
of cols of A
$(\operatorname{span}\{$ all $($ els of $A\})$
(2) then: the pivot cols
of A form a basis
for $\operatorname{col}(A)$
col (A)
from the echelon form of A, the 1 st, 3 rif, 4 th eels ave pivot eds $\stackrel{\text { them }}{\Rightarrow}$ basis $\left\{\left(\begin{array}{l}1 \\ 3 \\ 2 \\ 5\end{array}\right)\left(\begin{array}{c}2 \\ 1 \\ -1 \\ 0\end{array}\right)\left(\begin{array}{c}-6 \\ 5 \\ 4 \\ 14\end{array}\right)\right\}$

$$
\operatorname{dim}(\operatorname{col}(A))=3 .
$$

The Rank Theorem: If a matrix A has n columns, then $\operatorname{rank} A+\operatorname{dimNul}(A)=n$.

$$
\operatorname{dim}((0)(A))
$$

The Basis Theorem: Let H be a p-dimensional subspace of \mathbb{R}^{n}. Any linearly ingependent set of exactly p elements in H is automatically a basis for H. Moreover, any set of p elements of H that spans H is automatically a basis for H.
eg 2. \quad null (A).

$$
\operatorname{unll}^{\prime}(A)=\{x, \quad A x=0\}
$$

Since x_{2} is free, $x_{2}=s, s \in \mathbb{R}$

From the 4 th row,

$$
\begin{aligned}
& \text { zid row) } \quad 5 x_{4}=0 \Rightarrow x_{4}=0 \\
& \text { 2nd } \cdots, \quad 5 x_{3}-7 x_{4}=0, \quad x_{3}=0 \\
& \text { 1st } \ldots, \quad x_{1}+3 x_{2}+3 x_{3}+2 x_{4}=0 \\
& \Rightarrow \quad x_{1}=-35 \\
& \left(\begin{array}{l}
x_{1} \\
x_{3} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
-3 s \\
s \\
0 \\
0
\end{array}\right)=s\left(\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right), s \in \mathbb{R} \\
& \operatorname{null}(A)=\left\{s\left(\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right), s \in \mathbb{R}\right\} \\
& \text { busis of } \operatorname{uall}(A),\left\{\left(\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right)\right\} \\
& \operatorname{dim}(\operatorname{unil}(A))=1
\end{aligned}
$$

The Invertible Matrix Theorem: Let A be an $n \times n$ matrix. Then the following statements are each equivalent to the statement that A is an invertible matrix.

1. The columns of A form a basis of \mathbb{R}^{n}.
2. $\operatorname{Col} A=\mathbb{R}^{n}$.
3. $\operatorname{dim} \mathrm{Col} A=n$.
4. $\operatorname{rank} A=n$.
5. $\operatorname{Nul} A=\{\mathbf{0}\}$.
6. $\operatorname{dimNul} A=0$.

Example 3: True or False:

True a. If $\mathscr{B}=\left\{\mathbf{b}_{1}, \cdots, \mathbf{b}_{p}\right\}$ is a basis for a subspace H and if $\mathbf{x}=c_{1} \mathbf{b}_{1}+\cdots+c_{p} \mathbf{b}_{p}$, then c_{1}, \cdots, c_{p} are the coordinates of \mathbf{x} relative to the basis \mathscr{B}.
₹ ${ }^{\prime}$ ll ${ }^{\circ}$. Each line in \mathbb{R}^{n} is a one-dimensional subspace of \mathbb{R}^{n}.
True. The dimension of $\mathrm{Col} A$ is the number of pivot columns in A.

If o lime is gubspue of \mathbb{R}^{6}, this live must puss through the origins.

Turd. The dimensions of $\mathrm{Col} A$ and $\mathrm{Nul} A$ add up to the number of columns in A.
True. If a set of p vectors spans a p-dimensional subspace H of \mathbb{R}^{n}, then these vectors form a basis for H.

Example 4: If the rank of a 9×8 matrix A is 7 , what is the dimension of the solution space of $A \mathbf{x}=\mathbf{0}$.

II
unll(A) by the Rank thane,

$\Rightarrow \quad \operatorname{dim}(\operatorname{coll}(A))=1$

