Section 2.9 Dimension and Rank

<u>Definition</u>: Suppose the set $\mathscr{B} = {\mathbf{b}_1, \dots, \mathbf{b}_p}$ is a basis for a subspace *H*. For each **x** in *H*, the coordinates of **x** relative to the basis \mathscr{B} are the weights c_1, \dots, c_p such that $\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_p \mathbf{b}_p$, and the vector in \mathbb{R}^p ,

$$[\mathbf{x}]_{\mathscr{B}} = \begin{bmatrix} c_1 \\ \cdots \\ c_p \end{bmatrix}$$

is called the coordinate vector of x (relative to B) or the B-coordinate vector of x <u>Remark</u>: The main reason for selecting a basis for a subspace H, instead of merely a spanning set, is that each vector in H can be written in only one way as a linear combination of the basis vectors.

Example 1: The vector **x** is in a subspcae *H* with a basis $\mathscr{B} = {\mathbf{b}_1, \mathbf{b}_2}$, and

$$\mathbf{b}_1 = \begin{bmatrix} 3\\6\\2 \end{bmatrix}, \mathbf{b}_2 = \begin{bmatrix} -1\\0\\1 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} 3\\12\\7 \end{bmatrix}$$

Find the \mathscr{B} -coordinate vector of **x**.

Find
$$x_1 x_2 \in IR$$
 such that
 $x_1 \overline{b}_1 + x_2 \overline{b}_2 = \overline{x}$
(2) $A \overline{y} = \overline{x}, \quad A = \{\overline{b}_1 \ \overline{b}_2\}, \overline{y} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$
(2) auguented matrix format for the 2^{nd} row
 $[\overline{b}_1 \ \overline{b}_1 \ \overline{x}] \longrightarrow \begin{bmatrix} 0 & 0 & 3 \\ 0 & 0 & 0 \end{bmatrix}, \quad x_1 = 3$
 $from the 2^{nd} row
 $x_1 = 2 \rightarrow \overline{y} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

Definition: The dimension of a nonzero subspace H, denoted by dim(H), is the number of vectors in any basis for H. The dimension of the zero subspace $\{0\}$ is defined to be zero.

<u>Remark:</u> The space \mathbb{R}^n has dimension *n*.

Definition: The rank of a matrix A, denoted by rank(A), is the dimension of the column space of A.

Example 2: The echelon form of A is given, find basis for ColA and NulA, and then state the dimensions of these subspaces.

<u>The Rank Theorem:</u> If a matrix *A* has *n* columns, then rank $A + \dim Nul(A) = n$.

ل الس (۱۰۱ (۹۱) سالی

<u>The Basis Theorem:</u> Let *H* be a *p*-dimensional subspace of \mathbb{R}^n . Any linearly independent set of exactly *p* elements in *H* is automatically a basis for *H*. Moreover, any set of *p* elements of *H* that spans *H* is automatically a basis for *H*.

ez 2. null (A).

$$uull (A) = \{x, Ax = 0\}$$

Since x_2 is free, $x_2 = 5$, SEIR
From the 4pth row, ---

$$---- 3 + 4 + 0 = 3 + 4 = 0$$

$$---- 2 + 4 = --, \quad 5x_3 - 7x_4 = 0, \quad x_3 = 0$$

$$---- 1 + 5x_3 + 3x_3 + 2x_4 = 0$$

$$\Rightarrow x_1 = -35$$

$$\begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{pmatrix} = \begin{pmatrix} -35 \\ 5 \\ 0 \\ 0 \end{pmatrix} = 5 \begin{pmatrix} -3 \\ 1 \\ 0 \\ 0 \end{pmatrix}, S \in \mathbb{R}$$

null (A) =
$$\left\{ \begin{array}{c} s \begin{pmatrix} -3 \\ 0 \\ 0 \end{pmatrix}, \begin{array}{c} s \in IR \end{array} \right\}$$

busis of mull (A), $\left\{ \begin{pmatrix} -3 \\ 1 \\ 0 \end{pmatrix} \right\}$

The Invertible Matrix Theorem: Let A be an $n \times n$ matrix. Then the following statements are each equivalent to the statement that A is an invertible matrix.

- 1. The columns of A form a basis of \mathbb{R}^n .
- 2. Col $A = \mathbb{R}^n$.
- 3. dimColA = n.
- 4. rankA = n.
- 5. Nul $A = \{0\}$.
- 6. dimNulA = 0.

Example 3: True or False:

- $\neg \mathbf{v}^{\mathbf{A}}$ a. If $\mathscr{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_p\}$ is a basis for a subspace H and if $\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_p \mathbf{b}_p$, then c_1, \dots, c_p are the coordinates of **x** relative to the basis \mathscr{B} . If a line is subspace of 1k°, this line must puss through the outging
- \checkmark The dimension of ColA is the number of pivot columns in A.
- \checkmark The dimensions of ColA and NulA add up to the number of columns in A.
- \mathcal{T} e. If a set of p vectors spans a p-dimensional subspace H of \mathbb{R}^n , then these vectors form a basis for *H*.

Example 4: If the rank of a 9×8 matrix A is 7, what is the dimension of the solution space of $A\mathbf{x} = \mathbf{0}$.

> Wind (A) by the Rock them, Min (mill (A)) + rouk (A) = # of col of A = 8 =) dim [uull (A1) = 1