Section 3.2 Properties of Determinants

Theorem: (Row operations) Let *A* be a square matrix.

- 1. If a multiple of one row of A is added to another row to produce a matrix B, then det B = det A.
- 2. If two rows of A are interchanged to produce B, then detB = -detA.
- 3. If one row of *A* is multiplied by *k* to produce *B*, then $\det B = k \cdot \det A$.

Example 1: State the property of determinants for the following equations.

Example 1. State the property of determinants for the following equations:

(a)
$$\begin{vmatrix} 2 & -6 & 4 \\ 3 & 5 & -2 \\ 1 & 6 & 3 \end{vmatrix} = 2 \begin{vmatrix} 1 & -3 & 2 \\ 3 & 5 & -2 \\ 1 & 6 & 3 \end{vmatrix}$$

(b) $\begin{vmatrix} 1 & 3 & -4 \\ 2 & 0 & -3 \\ 5 & -4 & 7 \end{vmatrix} = \begin{vmatrix} 1 & 3 & -4 \\ 0 & -6 & 5 \\ 5 & -4 & 7 \end{vmatrix}$

As $\begin{vmatrix} 2 & 1 & 3 & 4 \\ 2 & 0 & -3 \\ 4 & 3 & 4 \end{vmatrix} = \begin{vmatrix} 1 & 3 & -4 \\ 0 & -6 & 5 \\ 5 & -4 & 7 \end{vmatrix}$

(b) $\begin{vmatrix} 2 & 1 & 3 & 4 \\ 2 & 0 & -3 \\ 5 & -4 & 7 \end{vmatrix} = \begin{vmatrix} 1 & 3 & -4 \\ 0 & -6 & 5 \\ 5 & -4 & 7 \end{vmatrix}$

(c) $\begin{vmatrix} 2 & 1 & 3 & 4 \\ 2 & 0 & -3 \\ 5 & -4 & 7 \end{vmatrix} = \begin{vmatrix} 1 & 3 & -4 \\ 0 & -6 & 5 \\ 5 & -4 & 7 \end{vmatrix}$

(def (A₁) = $\begin{vmatrix} 1 & 3 & 4 \\ 4 & 3 & 4 \end{vmatrix}$

(a) $\begin{vmatrix} 1 & 3 & 4 \\ 2 & 0 & -3 \\ 5 & -4 & 7 \end{vmatrix} = \begin{vmatrix} 1 & 3 & -4 \\ 0 & -6 & 5 \\ 5 & -4 & 7 \end{vmatrix}$

Example 2: Find the determinants given $\begin{vmatrix} a & b & c \\ d & e & f \end{vmatrix} = 5$.

Example 2: Find the determinants given
$$\begin{vmatrix} a & e & f \\ g & h & i \end{vmatrix} = 3$$
.

(a) $\begin{vmatrix} a & b & c \\ 3d & 3e & 3f \\ g & h & i \end{vmatrix} = 3 \cdot 5$

(b) $\begin{vmatrix} a & b & c \\ 2d + a & 2e + b & 2f + c \\ g & h & i \end{vmatrix}$. As $\begin{vmatrix} a & b & c \\ 2d + a & 2e + b & 2f + c \\ g & h & i \end{vmatrix}$. As $\begin{vmatrix} a & b & c \\ 2d + a & 2e + b & 2f + c \\ g & h & i \end{vmatrix}$.

Remark: Suppose a square matrix A has been reduced to an echelon form U by row replacements and row interchanges. If there are r interchanges, then

(
$$ab$$
 $Scaling)$ $det A = (-1)^r det U$

Notice that $\det U = u_{11} \cdot u_{22} \cdots u_{nn}$, which is the product of the diagonal entries of U. If A is invertible, the entries u_{ii} are all pivots. Otherwise, at least u_{nn} is zero. Thus

$$\det A = \begin{cases} (-1)^r \cdot \begin{pmatrix} \text{product of} \\ \text{pivots in } U \end{pmatrix} & \text{when } A \text{ is invertible} \\ 0 & \text{when } A \text{ is not invertible} \end{cases}$$

A=
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}_{3:2}$$

Not $(A) = 3$

Not $(2A) = \frac{2 \cdot 2 \cdot 3}{4}$
 $\begin{pmatrix} 2a & 2b \\ 2c & 1d \end{pmatrix}$

A $\begin{pmatrix} 2a & 2b \\ 2c & 1d \end{pmatrix}$

A $\begin{pmatrix} 2a & 2b \\ 2c & 1d \end{pmatrix}$

Section 3.2 Properties of Determinants

Theorem: (Row operations) Let A be a square matrix.

- 1. If a multiple of one row of A is added to another row to produce a matrix B, then det B = det A.
- 2. If two rows of A are interchanged to produce B, then detB = -detA.
- 3. If one row of A is multiplied by k to produce B, then $\det B = k \cdot \det A$.

Example 1: State the property of determinants for the following equations.

(b)
$$\begin{vmatrix} 1 & 3 & -4 \\ 2 & 0 & -3 \\ 5 & -4 & 7 \end{vmatrix} = \begin{vmatrix} 1 & 3 & -4 \\ 0 & -6 & 5 \\ 5 & -4 & 7 \end{vmatrix}$$

Example 2: Find the determinants given $\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = 5$.

(a)
$$\begin{vmatrix} a & b & c \\ 3d & 3e & 3f \\ g & h & i \end{vmatrix}$$

(b) $\begin{vmatrix} a & b & c \\ 2d+a & 2e+b & 2f+c \\ g & h & i \end{vmatrix}$.

Remark: Suppose a square matrix A has been reduced to an echelon form U by row replacements and row interchanges. If there are r interchanges, then

$$\det A = (-1)^r \det U$$

Notice that $\det U = u_{11} \cdot u_{22} \cdots u_{nn}$, which is the product of the diagonal entries of U. If A is invertible, the entries u_{ii} are all pivots. Otherwise, at least u_{nn} is zero. Thus

$$\det A = \begin{cases} (-1)^r \cdot \begin{pmatrix} \text{product of} \\ \text{pivots in } U \end{pmatrix} & \text{when} \ A \text{ is invertible} \\ 0 & \text{when } A \text{ is not invertible} \end{cases}$$

Example 3: Find the determinants by row reduction to echelon form.

Abo
$$R_1 = R_2 - R_1$$
 $R_2 = R_2 - R_1$
 $R_3 = R_3 - R_1$
 $R_4 = R_4 - R_1$
 $R_4 = R_4$
 $R_4 = R_$

Theorem: A square matrix A is invertible if and only if $\det A \neq 0$.

Theorem: If A is an $n \times n$ matrix, then $\det A^T = \det A$.

Theorem: If A and B are $n \times n$ matrices, then $\det AB = (\det A)(\det B)$.