Math 26500 - zecheng zhang, Spring 2022

Section 3.2 Properties of Determinants

Theorem: (Row operations) Let A be a square matrix.

1. If a multiple of one row of A is added to another row to produce a matrix B, then
detB = detA.

2. If two rows of A are interchanged to produce B, then detB = —detA.
3. If one row of A is multiplied by & to produce B, then detB = k - detA.

Example 1: State the property of determinants for the following equations.
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Remark: Suppose a square matrix A has been reduced to an echelon form U by row
replacements and row interchanges. If there are r interchanges, then ) ‘,.“Q): |o‘
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Notice that detU = uyq - uy; - - - un,, which is the product of the diagonal entries of U. If
A is invertible, the entries u;; are all pivots. Otherwise, at least uy,, is zero. Thus
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Example 3: Find the determinants by row reduction to echelon form.
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Example 4: Use c}etermlnants to decide if the set of vecTors is hnearly independent.
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Theorem: A square matrix A is invertible if and only if detA £ 0.
Theorem: If A is an n X n matrix, then detA” = detA.

Theorem: If A and B are n x n matrices, then detAB = (detA)(detB).



