For any $n \times n$ matrix A and any \mathbf{b} in \mathbb{R}^{n}, let $A_{i}(\mathbf{b})$ be the matrix obtained from A by replacing column i by the vector \mathbf{b}

$$
\dot{A}_{i}(\mathbf{b})=\left[\mathbf{a}_{1} \cdots \mathbf{b}^{\prime} \cdots \mathbf{a}_{n}\right] \longrightarrow \begin{aligned}
& \text { veplace He ith col } \\
& \text { of } A \text { by } \vec{b}
\end{aligned}
$$

Theorem;-(Cramer's Rule): Let A be an invertible $n \times n$ matrix. For any \mathbf{b} in \mathbb{R}^{n}, the unique/ solution \mathbf{x} of $A \mathbf{x}=\mathbf{b}$ has entries given by

$$
C_{x_{i}}=\frac{\operatorname{det} \overline{A_{i}(\mathbf{b})}}{\operatorname{det} A}, \dot{\mathbf{t}}=1,2, \cdots, n
$$

itch Patty of the unknown Y_{1} (tor $\bar{X}^{\text {a }}$

Proof:
used to solve

$$
\begin{gathered}
\text { o solve } \\
A \vec{x}=\vec{b}, \quad A \in \mathbb{R}^{n . n}, \vec{b} \in \mathbb{R}^{n}, \vec{x} \in \mathbb{R}^{n} \text { (unknown }
\end{gathered}
$$

(unknown)
eye.

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
4 & 1 \\
5 & 2
\end{array}\right) \vec{b}=\binom{6}{7} \\
& \operatorname{det}(A)=4 \cdot 2-1 \cdot 5=3 \\
& x_{1}=\frac{\operatorname{det}\left(A_{1}(b)\right)}{\operatorname{det}(A)}=\frac{\operatorname{det}\left(\begin{array}{ll}
6 & 1 \\
7 & 2
\end{array}\right)}{3}=\frac{6 \cdot 2-7}{3}=\frac{5}{3}
\end{aligned}
$$

Example 1: Use Cramer's rule to solve the system

$$
\begin{array}{r}
4 x_{1}+x_{2}=6 \\
5 x_{1}+2 x_{2}=7 \\
x_{2}=\frac{\operatorname{det}\left(A_{2}(b)\right)}{\operatorname{det}(A)}=\frac{4\left(\begin{array}{ll}
4 & 6 \\
5 & 7
\end{array}\right)}{3}=\frac{47-65}{3}=\frac{-2}{3}
\end{array}
$$

A formula for A^{-1} : For an invertible $n \times n$ matrix A, the j-th column of A^{-1} is a vector \mathbf{x} that satisfies

$$
A \mathbf{x}=\mathbf{e}_{j}
$$

the i-th entry of \mathbf{x} is the (i, j)-entry of A^{-1}. By Cramer's rule,

$$
\begin{equation*}
\left\{(i, j) \text {-entry of } A^{-1}\right\}=x_{i}=\frac{\operatorname{det} A_{i}\left(\mathbf{e}_{j}\right)}{\operatorname{det} A} \tag{2}
\end{equation*}
$$

Recall: $A_{j i}$ denotes the submatrix of A formed by deleting row j and column i, thus

$$
\operatorname{dec} \operatorname{cic}^{2}=(-1)^{i+j} \operatorname{det} A_{j i}=\text { def }_{j i}
$$

where $C_{j i}$ is a cofactor of A.

$$
\begin{align*}
& \text { Thus } \\
& A^{-1} \cdot \operatorname{cet}(A)=\operatorname{adj}(A) \tag{3}\\
& A^{-1} / A^{I} \cdot \operatorname{ctt}(A)=\operatorname{adj}(A)^{\circ} A^{-1}=\frac{1}{\operatorname{det} A}\left[\begin{array}{cccc}
C_{11} & C_{21} & \cdots & C_{n 1} \\
C_{12} & C_{22} & \cdots & C_{n 2} \\
\vdots & \vdots & & \vdots \\
C_{1 n} & C_{2 n} & \cdots & C_{n \eta}
\end{array}\right]
\end{align*}
$$

Cis hove cure the cofactors of $i j$ the entry of vantrix A.

The matrix of cofactors on the right side of (3) is called the adjugate (or classical adjoint) of A, denoted by $\operatorname{adj} A$.
cadjugate (A)
Theorem (An inverse formula): Let A be an invertible $n \times n$ matrix, then

$$
A^{-1}=\frac{1}{\operatorname{det} A} \operatorname{adj} A
$$

$$
I \cdot \operatorname{det}(A)=\operatorname{adj}^{\prime}(A) \cdot A
$$

Example 2: Find the inverse of $A=\left[\begin{array}{ccc}2 & 1 & 3 \\ 1 & -1 & 1 \\ 1 & 4 & -2\end{array}\right]$
$C_{11}=(-1)^{1+1} \cdot 2 \cdot \operatorname{det}\left(\begin{array}{cc}-1 & 1 \\ 4 & -2\end{array}\right)^{1}$

$$
C_{12}=(-1)^{1+2} \cdot 1 \cdot \cot \left(\begin{array}{cc}
1 & 1 \\
1 & -2
\end{array}\right)
$$

$$
\left(\begin{array}{ccc}
\operatorname{det}(A) & 0 & 0 \\
0 & \operatorname{det}(A) & 0 \\
0 & 0 & \operatorname{det}(A)
\end{array}\right)=\left(\begin{array}{ccc}
14 & 0 & 0 \\
0 & 14 & 0 \\
0 & 0 & 14
\end{array}\right)
$$

$$
\Rightarrow \quad \operatorname{det}(A)=14
$$

lIst bow zulu ed entry cofuctor of matrix A.

$$
A^{-1}=\frac{1}{14} \cdot a d_{j}(A)
$$

$$
\operatorname{adj}(A)=\left(\begin{array}{ccc}
-2 & 14 & 4 \\
3 & -7 & 1 \\
5 & -7 & -3
\end{array}\right)
$$

Theorem: If A is a 2×2 matrix, the area of the parallelogram determined by the columns of A is $|\operatorname{det} A|$. If A is a 3×3 matrix, the volume of the parallelepiped determined by the columns of A is $|\operatorname{det} A|$.
Remark: Let \mathbf{a}_{1} and \mathbf{a}_{2} be nonzero vectors. Then for any scalar c, the area of the parallelogram determined by \mathbf{a}_{1} and \mathbf{a}_{2} equals the area of the parallelogram determined by \mathbf{a}_{1} and $\mathbf{a}_{2}+c \mathbf{a}_{1}$.

FIGURE 2 Two parallelograms of equal area.

Example 3: Find the area of the parallelogram whose vertices are $(21,0)(0,3)$, $4,-4), 8,17)$.
subtract $(-2,2)$ from all 4 vertices. wean $=|\operatorname{det}(A)|$
\Leftrightarrow shift the porullelogram to the org in. (6) the uvea does not change.

$$
=\left|\operatorname{dat}\left(\begin{array}{ll}
2 & 6 \\
5 & 1
\end{array}\right)\right|
$$

$$
(0,0),(2,5)(6.1)(8.6)|=|2.1-5.6|=28
$$

Example 4: Find the volume of the parallelepiped with one vertex at the origin and adjacent vertices at $(1,4,0),(-2,-5,2)$ and $(-1,2,-1)$

Theorem: Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation determined by a 2×2 matrix -cation A. If S is a parallelogram in \mathbb{R}^{2}, then

$$
\{\text { area of } T(S)\}=|\operatorname{det} A| \cdot \text { area of } S\}
$$

If T is determined by a 3×3 matrix A, and if S is a parallelepiped in $\mathbb{R}^{3} \mathrm{R} 3$, then

$$
\{\text { volume of } T(S)\}=|\operatorname{det} A| \cdot \text { volume of } S\}
$$

suppose we have a parallelepiped S.
\& a linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}(A)$
Q: Is that possiste $T(S)=A S$ is a parellelogiven
A: Yes. $A S=\underbrace{\left(\begin{array}{lll}x & x & x \\ x & x & x \\ 0 & 0 & 0\end{array}\right)}_{B} \leftarrow \begin{aligned} & \text { entire ore now } \\ & =0\end{aligned}$
Q. what properties should A sulisfy (?)

$$
\begin{gathered}
\operatorname{det}(B)=0 \\
B=A S \\
O=\operatorname{det}(B)=\operatorname{det}(A S)=\operatorname{det}(A) \cdot \operatorname{det}(S) \\
\Rightarrow \operatorname{det}(A)=0 \Leftrightarrow A \text { is singular. }
\end{gathered}
$$

