Math 26500 - zecheng zhang, Spring 2022

Section 3.3 Cramer’s Rule, Volume, And Linear Transforamtions

For any n X n matrix A and any b in R”, let A;(b) be the matrix obtained from A by
replacing column i by the vector b Ve P\"“ He \-W co‘
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Theorem:-(Cramer’s Rule): Let A be an invertible n X n matrix. For any b in R”", the
uniqug/solution x of AX = b has entries given by
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Example 1: Use Cramer’s rule to solve the system
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A formula for A—': For an invertible n x n matrix A, the j-th column of A~! is a vector
X that satisfies

AXx = €
the i-th entry of x is the (i, j)-entry of A~!. By Cramer’s rule,
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Recall: A j; denotes the submatrix of A formed by deleting row j and column i, thus
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The matrix of cofactors on the right side of (3) is called the adjugate (or classical
adjoint) of A, denoted by adjA. l‘/“{i‘"‘a"‘Q (»
Theorem (An inverse formula): Let A be an invertible n x n matrix, then
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Theorem: If A is a 2 X 2 matrix, the area of the parallelogram determined by the
columns of A is |detA|. If A is a 3 X 3 matrix, the volume of the parallelepiped deter-
mined by the columns of A is |detA].

Remark: Let a; and ap be nonzero vectors. Then for any scalar ¢, the area of the
parallelogram determined by a; and a, equals the area of the parallelogram determined
by a; and a; 4 ca;.
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FIGURE 2 Two parallelograms of equal area.

Example 3: Find the area of the parallelogram whose vertices are (<)1 ,QL, (0,5),

) )

subtract (2,2) {eo~ M g vertiog] puen = | MHCA) |

/=) g\n‘.&* He fuw“elobwm o 4dle ov'a.‘v\_ :‘ ot (ZS 6. ) '
&) ta owe does et dusge-
woo), iy ) b)) (80) 1= |an-50| 28

Example 4: Find the volume of the parallelepiped with one vertex at the origin and
adjacent vertices at (1,4,0), (—=2,—5,2) and (—1,2,—1)
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Theorem: Let 7 : R?> — R? be the linear transformation determined by a 2 x 2 matrix ~ —C ation
A. If S is a parallelogram in R?, then

{area of T(S)} = |detA|-area of S}
If T is determined by a 3 x 3 matrix A, and if S is a parallelepiped in R>R3, then

{volume of T'(S)} = |detA|-volume of S}
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