Section 4.1 Vector Spaces and Subspaces

Definition (Vector space):

A vector space is a nonempty set V of objects, called *vectors*, on which are defined two operations, called *addition* and *multiplication by scalars* (real numbers), subject to the ten axioms (or rules) listed below.¹ The axioms must hold for all vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} in V and for all scalars c and d.

1. The sum of u and v, denoted by
$$u + v$$
, is in V.
2. $u + v = v + u$.
3. $(u + v) + w = u + (v + w)$.
4. There is a zero vector 0 in V such that $u + 0 = u$.
5. For each u in V, there is a vector $-u$ in V such that $u + (-u) = 0$.
5. For each u in V, there is a vector $-u$ in V such that $u + (-u) = 0$.
5. For each u in V, there is a vector $-u$ in V such that $u + (-u) = 0$.
5. For each u in V, there is a vector $-u$ in V such that $u + (-u) = 0$.
5. For each u in V, there is a vector $-u$ in V such that $u + (-u) = 0$.
5. For each u in V, there is a vector $-u$ in V such that $u + (-u) = 0$.
5. For each u in V, there is a vector $-u$ in V such that $u + (-u) = 0$.
5. For each u in V, there is a vector $-u$ in V such that $u + (-u) = 0$.
5. $(c + d)u = cu + dv$.
6. The scalar multiple of u by c, denoted by cu, is in V.
7. $c(u + v) = cu + cv$.
8. $(c + d)u = cu + du$.
9. $c(du) = (cd)u$.
10. $[u = u$.
10. $[u = u$.
10. $[u = u$.
11. $[c(u) = C_0 + C_1 t^4 C_2 t^4 + \dots + C_1 t^4]$ Co $0_1 \dots 0_n$ oro (coeffs, thus we let the is dependent voricule.
11. $(c + i) = C_0 + C_1 t^4 C_2 t^4 + \dots + C_1 t^4]$ Co $0_1 \dots 0_n$ oro (coeffs, thus we let the is dependent voricule.

() degree of pet) is the highest power of the
() If
$$\omega = \alpha_1 = \dots = \alpha_n = 0$$
, $P(t) = 0$, zero polynomial, (zero in the lfn)
addition: $g(t) = b_0 + b_1 t + \dots + b_n t^n$, $p + g = (a_0 + b_0) + (a_1 + b_1) t + \dots + (a_n + b_n) t^n$
Facts: For each u in V and scalar c,
Scolar multiplication, $c \in IR$
 $0u = 0 - 0$
 $0u = 0 - 0$
 $u = (-1)u$ $t - u + 0u + 0$

Example 1: Let V be the first quadrant in the xy-plane; that is, tlet $V = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : x \ge 0, y \ge 0 \right\}$ (1) If u and v are in V, is u + v in V? $\vec{u} = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}, x_1 \ge 0, y_1 \ge 0$ $\vec{v} + \vec{v} = \begin{pmatrix} x_1 + x_1 \\ y_1 + y_2 \end{pmatrix}$ $\vec{v} = \begin{pmatrix} x_2 \\ y_1 \end{pmatrix}, x_2 \ge 0, y_1 \ge 0$ $\vec{v} + \vec{v} = \begin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \end{pmatrix}$ $\vec{v} = \begin{pmatrix} x_1 \\ y_2 \end{pmatrix}, x_3 \ge 0, y_4 \ge 0$ $\vec{v} + \vec{v} = \begin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \end{pmatrix}$ $\vec{v} = \begin{pmatrix} x_1 \\ y_2 \end{pmatrix}, x_3 \ge 0, y_4 \ge 0$ $\vec{v} + \vec{v} = \begin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \end{pmatrix}$ $\vec{v} = \begin{pmatrix} x_1 \\ y_2 \end{pmatrix}, x_3 \ge 0, y_4 \ge 0$ $\vec{v} + \vec{v} = \begin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \end{pmatrix}$ $\vec{v} = \begin{pmatrix} x_1 \\ y_2 \end{pmatrix}, x_3 \ge 0, y_4 \ge 0$ $\vec{v} + \vec{v} = \begin{pmatrix} x_1 \\ y_1 + y_2 \end{pmatrix}$

(2) Find a specific vector \mathbf{u} in V and a specific scalar c such that $c\mathbf{u}$ is not in V.

$$u = \binom{1}{1} \in V$$

 $c = -1$ $c U = \binom{-1}{1} \notin V$, not closed under sealor multiplicate.

Definition (Subspace):

HSV

A subspace of a vector space V is a subset $H \mid of V$ that has three properties:

- a.) The zero vector of V is in H.
- b. *H* is closed under vector addition. That is, for each **u** and **v** in *H*, the sum **u** + **v** is in *H*.
- c. *H* is closed under multiplication by scalars. That is, for each **u** in *H* and each scalar *c*, the vector *c***u** is in *H*.

thm: a subsport is also avector space.

Examples:

- 1. The set consisting of only the zero vector in a vector space V is a subspace of V, called the zero subspace and written as $\{0\}$.
- Let P be the set of all polynomials with real coefficients, with operations in P defined as for functions. Then P is a subspace of the space of all real-valued functions defined on R.
- 3. The vector space \mathbb{R}^2 is not a subspace of \mathbb{R}^3 because \mathbb{R}^2 is not even a subset of \mathbb{R}^3 .
- 4. A plane in \mathbb{R}^3 not through the origin is not a subspace of \mathbb{R}^3 .

(12)

Example 2: Determine if the given set is a subspace of \mathbb{P}_n for an appropriate value of (1) All polynomials of the form $\mathbf{p}(t) = at^2$, where a is in \mathbb{R} (1) All polynomials of the form $\mathbf{p}(t) = at^2$, where a is in \mathbb{R} (2) $\mathbf{p} = 0.t^2$, $\alpha_1 \in \mathbb{R}$, $\mathbf{p} = 0.t^2$, $\delta_2 \in \mathbb{R}$, $\mathbf{p} \cdot \mathbf{z} \in V$, $\mathbf{p} + \mathbf{z} = (\alpha_1 + \alpha_2)t^2 \in V \checkmark$ (3) $\mathbf{p} = 0.t^2$, $\mathbf{c} \in \mathbb{R}$, $\mathbf{c} \mathbf{p} = 0.t^2$, $\delta_2 \in \mathbb{R}$, $\mathbf{p} \cdot \mathbf{z} \in V$, $\mathbf{p} + \mathbf{z} = (\alpha_1 + \alpha_2)t^2 \in V \checkmark$ (2) All polynomials of the form $\mathbf{p}(t) = a + t^2$, where a is in \mathbb{R} (2) All polynomials of the form $\mathbf{p}(t) = a + t^2$, where a is in \mathbb{R}

<u>Theorem</u>: If $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ are in a vector space *V*, then $\text{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is a subspace of *V*. We call $\text{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ the subspace spanned (or generated) by $\mathbf{v}_1, \dots, \mathbf{v}_p$.

Example 3: Let W be a set of all vectors of the form $\begin{bmatrix} 2s+4t \\ 2s \\ 2s-3t \\ 5t \end{bmatrix}$. Show that W is a

subspace of \mathbb{R}^4 .

$$\begin{pmatrix} 2s+4t\\ 2s+0\\ 2s-st\\ 0.5+5t \end{pmatrix} = \begin{pmatrix} 2s\\ 2s\\ 2s\\ 0 \end{pmatrix} + \begin{pmatrix} 4t\\ 0\\ -st\\ st \end{pmatrix}$$
$$= s \begin{pmatrix} 2\\ 2\\ 0\\ 0 \end{pmatrix} + t \begin{pmatrix} 0\\ -st\\ st \end{pmatrix}$$
$$= s \begin{pmatrix} 2\\ 2\\ 0\\ 0 \end{pmatrix} + t \begin{pmatrix} 0\\ -st\\ st \end{pmatrix}$$
$$= s \begin{pmatrix} 2\\ 2\\ 0\\ 0 \end{pmatrix} + t \begin{pmatrix} 0\\ -st\\ st \end{pmatrix}$$
$$= s \begin{pmatrix} 2\\ 2\\ 0\\ 0 \end{pmatrix} + t \begin{pmatrix} 0\\ -st\\ st \end{pmatrix}$$

Example 4: Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 4 \\ 2 \\ 6 \end{bmatrix}$, and $\mathbf{w} = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$.
(1) Is \mathbf{w} in $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$? How many vectors are in $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$?

(2) How many vectors are in Span $\{v_1, v_2, v_3\}$?

(3) Is w in the subspace spanned by $\{v_1, v_2, v_3\}$?