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Section 4.1 Vector Spaces and Subspaces

Definition (Vector space):

Examples:

Facts: For each u in V and scalar c,

0u = 0
c0 = 0
�u = (�1)u
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Example 1: Let V be the first quadrant in the xy-plane; that is, tlet V =

⇢
x
y

�
: x �

0,y � 0

�
(1) If u and v are in V , is u+v in V ?

(2) Find a specific vector u in V and a specific scalar c such that cu is not in V .

Definition (Subspace):

Examples:

1. The set consisting of only the zero vector in a vector space V is a subspace of V
, called the zero subspace and written as {0}.

2. Let P be the set of all polynomials with real coefficients, with operations in P
defined as for functions. Then P is a subspace of the space of all real-valued

functions defined on R.

3. The vector space R2
is not a subspace of R3

because R2
is not even a subset of

R3
.

4. A plane in R3
not through the origin is not a subspace of R3

.
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Example 2: Determine if the given set is a subspace of Pn for an appropriate value of

n.

(1) All polynomials of the form p(t) = at2
, where a is in R

(2) All polynomials of the form p(t) = a+ t2
, where a is in R

Theorem: If v1,v2, · · · ,vp are in a vector space V , then Span{v1, · · · ,vp} is a subspace

of V . We call Span{v1, · · · ,vp} the subspace spanned (or generated) by v1, · · · ,vp.

Example 3: Let W be a set of all vectors of the form
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775. Show that W is a

subspace of R4
.
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Example 4: Let v1 =
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(1) Is w in {v1,v2,v3}? How many vectors are in {v1,v2,v3}?

(2) How many vectors are in Span{v1,v2,v3}?

(3) Is w in the subspace spanned by {v1,v2,v3}?
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