Section 4.1 Vector Spaces and Subspaces
Definition (Vector space):
A vector space is a nonempty set V of objects, called vectors, on which are defined two operations, called addition and multiplication by scalars (real numbers), subject to the ten axioms (or rules) listed below. ${ }^{1}$ The axioms must hold for all vectors \mathbf{u}, \mathbf{v}, and \mathbf{w} in V and for all scalars c and d.
(1. The sum of \mathbf{u} and \mathbf{v}, denoted by $\mathbf{u}+\mathbf{v}$, is in V.
adding $\mathbf{2 .} \mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$.
3. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$.
4. There is a zero vector 0 in V such that $\mathbf{u}+0=\mathbf{u}$. $u+w=0$
5. For each \mathbf{u} in V, there is a vector $-\mathbf{u}$ in V such that $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$.
6. The scalar multiple of \mathbf{u} by c, denoted by $c \mathbf{u}$, is in V.
7. $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$. also unique.
8. $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$.
9. $c(d \mathbf{u})=(c d) \mathbf{u}$.
10. $\underset{1 \in \mathbb{R}}{1 u}=$

Examples:
\mathbb{P}_{n} : Set of all polynomials of degree less than or equal to n.

$$
P(t)=a_{0}+a_{1} t+c_{2} t^{2}+\ldots+a_{n} t^{n}, \quad c_{0} c_{1} \ldots a_{n} \text { are coeffs, thy ane } \mathbb{R} \text {. }
$$ t is dependant variable.

(1) degree of $p^{(+)}$is the higlost poverer of t.
(2) If $a_{0}=a_{1}=\cdots=a_{n}=0, p(t)=0$, zero polynomial, (zero in the $\left(p_{n}\right)$
addition: $q^{(t)}=b_{0}+b_{1}+t \ldots b_{n} t^{n}, p+q=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right)+\ldots+\left(c_{n}+b_{n}\right) t^{n}$
Facts: For each \mathbf{u} in V and scalar c,
Scolder multiplication, $c \in \mathbb{R}$

$$
\begin{aligned}
& \begin{array}{ll}
0 \mathbf{u} & =\underset{\mathbf{0}}{\mathrm{0}} \rightarrow \mathrm{O} \text { Onto } \\
c \mathbf{0} & =\mathbf{0}
\end{array} \\
& 0 \in \mathbb{R} \\
& c \mathbf{0}=\mathbf{0} \\
& -\mathbf{u}=(-1) \mathbf{u} \\
& +\cdots+a_{n} C t^{n} \text {. }
\end{aligned}
$$

Example 1: Let V be the first quadrant in the $x y$-plane; that is, tet $V=\left\{\begin{array}{l}x \\ y\end{array}\right]: x \geq$ $0, y \geq 0\}$ (1) If \mathbf{u} and \mathbf{v} are in V, is $\mathbf{u}+\mathbf{v}$ in V ?

$$
\begin{aligned}
& \vec{u}=\binom{x_{1}}{y_{1}}, x_{1} \geqslant 0, y_{1} \geqslant 0 \\
& \vec{u}+\vec{v}=\binom{x_{1}+x_{2}}{y_{1}+y_{2}} \\
& \vec{v}=\binom{x_{2}}{y_{2}}, x_{2} \geq 0, y_{2} \geqslant 0 \quad \\
& \quad b / c \quad x_{1}+x_{2} \geqslant 0, y_{1}+y_{2} \geqslant 0 \\
&
\end{aligned} \quad \Rightarrow \vec{u}+\vec{v} \in \vec{V}, \vec{v} \text { is cloud under addition. }
$$

(2) Find a specific vector \mathbf{u} in V and a specific scalar c such that $c \mathbf{u}$ is not in V.

$$
\begin{aligned}
& u=\binom{1}{1} \in V \\
& c=-1 \quad c U=\binom{-1}{-1} \& V, \text { hot closed under scalar moltiplicutt. }
\end{aligned}
$$

Definition (Subspace):

A subspace of a vector space V is a subset $H \mid$ of V that has three properties:
a. The zero vector of V is in H.
b. H is closed under vector addition. That is, for each \mathbf{u} and \mathbf{v} in H, the sum $\mathbf{u}+\mathbf{v}$ is in H.
c. H is closed under multiplication by scalars. That is, for each \mathbf{u} in H and each scalar c, the vector $c \mathbf{u}$ is in H.
the: a subspoe is also vector space.

Examples:

1. The set consisting of only the zero vector in a vector space V is a subspace of V , called the zero subspace and written as $\{\mathbf{0}\}$.
2. Let \mathbb{P} be the set of all polynomials with real coefficients, with operations in \mathbb{P} defined as for functions. Then \mathbb{P} is a subspace of the space of all real-valued functions defined on \mathbb{R}.

$$
\mathbb{R}^{j}=\left\{\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right), x, y, z \in \mathbb{R}\right]
$$

3. The vector space \mathbb{R}^{2} is not a subspace of \mathbb{R}^{3} because \mathbb{R}^{2} is not even a subset of \mathbb{R}^{3}.

$$
C \mathbb{R}^{2}=\left\{\binom{x}{y}, x+\mathbb{R}, y \in \mathbb{R}\right\}
$$

4. A plane in \mathbb{R}^{3} not through the origin is not a subspace of \mathbb{R}^{3}.
($n=2$)
Example 2: Determine if the given set is a subspace of \mathbb{P}_{n} for an appropriate value of $\bar{n} \quad V=$ \{
n.
(1) All polynomials of the form $\mathbf{p}(t)=a t^{2}$, where a is $\left.\underset{\rightarrow}{ } \mathbb{R}^{\mathbb{R}}\right\}$
(1) If we set $a=0, \quad P(t)=0 \cdot t^{2}=\overrightarrow{0} \Rightarrow \overrightarrow{0}$ is in this cot.
(2) $p=o_{1} t^{2}, a_{1} \in \mathbb{R}, q=a_{2} t^{2}, a_{2} \in \mathbb{R}, \quad p, q \in V, p+q=\left(a_{1}+c_{2}\right) t^{2} \in \cup \sqrt{ }$
(2) $p=c, l^{2}, c \in \mathbb{R}, c p=\underbrace{a_{1} c}_{\in \mathbb{R}} t^{2} \Rightarrow c p \in V \Rightarrow$ closed.

U: $\left\{\right.$ All polynomials of the form $\mathbf{p}(t)=a+t^{2}$, where a is in $\left.\mathbb{R}\right\}$
No, zero vector of P_{u} is not in $V \Rightarrow V$ is not a subspace.

Theorem: If $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{p}$ are in a vector space V, then $\operatorname{Span}\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{p}\right\}$ is a subspace of V. We call $\operatorname{Span}\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{p}\right\}$ the subspace spanned (or generated) by $\mathbf{v}_{1}, \cdots, \mathbf{v}_{p}$.
Example 3: Let W be a set of all vectors of the form $\left[\begin{array}{c}2 s+4 t \\ 2 s \\ 2 s-3 t \\ 5 t\end{array}\right]$. Show that W is a subspace of \mathbb{R}^{4}.

$$
\begin{aligned}
\left(\begin{array}{c}
2 s+4 t \\
2 s+0 \\
2 s-3 t \\
0 . s+5 t
\end{array}\right) & =\underbrace{\left(\begin{array}{c}
2 s \\
2 s \\
2 s \\
0
\end{array}\right)}_{u \in \mathbb{R}^{4}}+\underbrace{\left(\begin{array}{c}
4 t \\
0 \\
-3 t \\
s t
\end{array}\right)}_{v \in \mathbb{R}^{4}} \\
& =\underbrace{\left(\begin{array}{l}
2 \\
2 \\
0
\end{array}\right)}+\underbrace{t}_{3} \begin{array}{c}
4 \\
0 \\
-3 \\
5
\end{array})
\end{aligned}
$$

Example 4: Let $\mathbf{v}_{1}=\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}4 \\ 2 \\ 6\end{array}\right]$, and $\mathbf{w}=\left[\begin{array}{l}3 \\ 1 \\ 2\end{array}\right]$.
(1) Is \mathbf{w} in $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$? How many vectors are in $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$?
(2) How many vectors are in $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$?
(3) Is \mathbf{w} in the subspace spanned by $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$?

