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Section 4.1 Vector Spaces and Subspaces

Definition (Vector space):

A vector space is a nonempty set V' of objects, called vectors, on which are de-
fined two operations, called addition and multiplication by scalars (real numbers),
subject to the ten axioms (or rules) listed below.! The axioms must hold for all
vectors u, v, and w in V' and for all scalars ¢ and d.

1. The sumof u and v, denotedbyu + v, i1sin V.
W2 uiv=viu > 4V i U"‘"?,""*

3 u+v)+w=u+(V+Ww).

4. There is a zero vector 0 in V suchwthatu+0= L o Lwco

5. Foreachuin V, there 1s a vector —u in V such that u 4+ (—ua) = 0.
-~ fo‘ The scalar multiple of u by ¢, denoted by cu,isin V.  \ -u (u) s
N 7. c(u+v)=cu+cv. wllo Wil
8. (c+du=cu+du
9. c(du) = (cd)u.
(10. lu=u.
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Example 1: Let V be the first quadrant in the xy-plane; that is, tlet V = { [ﬂ x>
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(2) Find a specific vector u in V and a specific scalar ¢ such that caisnotin V.
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Definition (Subspace):
eV
A subspace of a vector space V' is a subset H| of V that has three properties:

@ The zero vector of V isin H .

b. H 1s closed under vector addition. That 1s, for each u and v in H, the sum
u+visin H.

¢. H 1s closed under multiplication by scalars. That 1s, for eachu in A and each

scalar c, the vector cuisin H.
et o salspoa iy also avector spoo.

Examples:

1. The set consisting of only the zero vector in a vector space V is a subspace of V
, called the zero subspace and written as {0}.

2. Let P be the set of all polynomials with real coefficients, with operations in [P
defined as for functions. Then P is a subspace gf the space of all real-valued
functions defined on R. L MYa €

R | (8] <9 )

3. The vector space R? is not a subspace of R because R? is not even a subset of
3
R3. L R: i(a]mn,gms

4. A plane in R? not through the origin is not a subspace of R>.
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(n22)
Example 2: Determine if the given set is a subspace of [P, for an appropriate value of
n. .
(1) All polynomials of the form p(z) = at?, where a is in)Rj
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(2){All polynomials of the form p(¢) = a + 12, where a is in Rj
2eve Ve @ [Pa s vt iw V D Vs wet S\A\S‘)uu'

v,
Theorem: Ifv,v,,---,v, are in a vector space V, then Span{vy,---,v,} is a subspace
of V. We call Span{vy,---,v,} the subspace spanned (or generated) by vi,---, V.
2s + 4t
Example 3: Let W be a set of all vectors of the form 2s2—s3t . Show that W is a
5t

subspace of R*.
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Example4: letvi=| 0 [,v,=|1|,v3=[2|,andw= |1].
—1 3 6 2

(1) Is win {vy,v,,v3}? How many vectors are in {vy,v;,v3}?

(2) How many vectors are in Span{vy,v;,v3}?

(3) Is w in the subspace spanned by {vi,v,,v3}?



