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Section 4.2 Null Spaces, Column Spaces and Linear Transforma-
tions

The null space of a matrix: The null space of an m⇥n matrix A, written as Nul A, is
the set of all solutions of the homogeneous equation Ax = 0. In set notation,

NulA = {x : x is in Rn and Ax = 0}

Theorem: The null space of an m⇥ n matrix A is a subspace of Rn. Equivalently,
the set of all solutions to a system Ax = 0 of m homogeneous linear equations in n
unknowns is a subspace of Rn.

Example 1 (An explicit description of Nul A): Find the spanning set for the null space
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Example 2: Either use an appropriate theorem to show that the given set, W , is a
vector space, or find a specific example to the contrary.
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The column space of a matrix: The column space of an m⇥ n matrix A, written as
Col A, is the set of all linear combinations of the columns of A. If A = [a1 · · · an], then

ColA = Span{a1, · · · ,an}

Theorem: The column space of an m⇥n matrix A is a subspace of Rm.

ColA = {b : b = Ax for some x in Rn}

Remark: The column space of an m⇥n matrix A is all of Rm if and only if the equation
Ax = b has a solution for each b in Rm.

Example 3: Find A such that the given set is Col A
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Definition: A linear transformation T from a vector space V into a vector space W is
a rule that assigns to each vector x in V a unique vector T (x) in W , such that

1. T (u+v) = T (u)+T (v), for all u,v in V

2. T (cu) = cT (u) for all u in V and all scalars c

The kernel or null space of T is the set of all u in V such that T (u) = 0.
The range of T is the set of all vectors in W of the form T (x) for some x in V .
Example 5: True or false.

a The null space of A is the solution set of the equation Ax = 0.

b The null space of an m⇥n matrix is in Rm.

c The column space of A is the range of the mapping x 7! Ax.

d If the equation Ax = b is consistent for every b, then Col A is Rm.

e The kernel of a linear transformation is a vector space.
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