Section 4.2 Null Spaces, Column Spaces and Linear Transformations

The null space of a matrix: The null space of an $m \times n$ matrix A, written as $\operatorname{Nul} A$, is the set of all solutions of the homogeneous equation $A \mathbf{x}=\mathbf{0}$. In set notation,

$$
\operatorname{unll}(A)=\operatorname{Nul} A=\left\{\mathbf{x}: \mathbf{x} \text { is in } \mathbb{R}^{n} \text { and } A \mathbf{x}=\mathbf{0}\right\}
$$

Theorem: The null space of an $m \times n$ matrix A is a subspace of \mathbb{R}^{n}. Equivalently, the set of all solutions to a system $A \mathbf{x}=\mathbf{0}$ of m homogeneous linear equations in n unknowns is a subspace of \mathbb{R}^{n}.

Example 1 (An explicit description of Nul A): Find the spanning set for the null space of the matrix $\left[\begin{array}{ccc}1 & -3 & 2 \\ 0 & 0 & 3\end{array}\right]$.

Example 2: Either use an appropriate theorem to show that the given set, W, is a vector space, or find a specific example to the contrary.
$\left.\mathrm{V}=\left\{\begin{array}{l}(1) \\ a \\ b \\ c\end{array}\right]: a+b+c=2\right\} \quad\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right), \quad \mathbf{U}+0+0 \neq L, \quad\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right), V$

$$
V=\{x, \quad A x=0\}
$$

The column space of a matrix: The column space of an $m \times n$ matrix A, written as $\overline{\operatorname{Col} A} A$, is the set of all linear combinations of the columns of A. If $A=\left[\mathbf{a}_{1} \cdots \mathbf{a}_{n}\right]$, then

$$
\operatorname{Col} A=\operatorname{Span}\left\{\mathbf{a}_{1}, \cdots, \mathbf{a}_{n}\right\} \longrightarrow \overrightarrow{x_{2}}=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)_{1}, x_{1}-x_{n} \in \mathbb{R}
$$

Theorem: The column space of an $m \times n$ matrix A is a subspace of \mathbb{R}^{m}.

Remark: The column space of an $m \times n$ matrix A is all of \mathbb{R}^{m} if and only if the equation vector $A \mathbf{x}=\mathbf{b}$ has a solution for each \mathbf{b} in \mathbb{R}^{m}.

$$
\mathbb{N}^{\operatorname{col}(A)}(\Delta)=\mathbb{R}^{m}
$$

Example 3: Find A such that the given set is $\operatorname{Col} A$

$$
\mathrm{V}=\left\{\left[\begin{array}{c}
b-c \\
2 b+3 d \\
b+3 c-3 d \\
c+d
\end{array}\right]: b, c, d \text { real }\right\}
$$

\checkmark is the linoor combination of

$$
\left.\begin{array}{l}
\left(\begin{array}{c}
b-c+0 \cdot d \\
2 b+c c+3 d \\
b+3 c-3 d \\
0 . b+c+d
\end{array}\right) \\
b \cdot\left(\begin{array}{c}
b \\
2 b \\
b \\
0
\end{array}\right)
\end{array} \stackrel{\left(\begin{array}{c}
1 \\
n_{1} \\
1 \\
0
\end{array}\right)}{\left(\begin{array}{c}
-c \\
0 \\
3 c \\
c
\end{array}\right)}+\left(\begin{array}{c}
0 \cdot d \\
3 d \\
-3 d \\
d
\end{array}\right)\right\}
$$

$$
\begin{aligned}
& \vec{u}_{1} \vec{u}_{2} \vec{u}_{3} \\
& v=\text { span }\left|\vec{u}_{1} \vec{u}_{2} \vec{u}_{3}\right| \\
& A=\left[\begin{array}{lll}
\overrightarrow{u_{1}} & \vec{u}_{2} & \vec{u}_{3}
\end{array}\right]
\end{aligned}
$$

Contrast Between Vul \boldsymbol{A} and $\operatorname{Col} \boldsymbol{A}$ for an $\boldsymbol{m} \mathbf{x} \boldsymbol{n}$ Matrix \boldsymbol{A}

$\operatorname{Nul} A$
$\mathrm{Col} A$

1. $\operatorname{Nul} A$ is a subspace of \mathbb{R}^{n}.
2. $\operatorname{Nul} A$ is implicitly defined; that is, you are given only a condition $(A \mathbf{x}=0)$ that vectors in $\mathrm{Nul} A$ must satisfy.
3. It takes time to find vectors in $\operatorname{Nul} A$. Row operations on $\left[\begin{array}{ll}A & 0\end{array}\right]$ are required.
4. There is no obvious relation between $\operatorname{Nul} A$ and the entries in A.
5. A typical vector \mathbf{v} in $\mathrm{Nul} A$ has the property that $A \mathbf{v}=\mathbf{0}$.
6. Given a specific vector \mathbf{v}, it is easy to tell if \mathbf{v} is in $\operatorname{Nul} A$. Just compute $A \mathbf{v}$.
7. $\operatorname{Nul} A=\{0\}$ if and only if the equation $A \mathbf{x}=0$ has only the trivial solution.
8. Vul $A=\{0\}$ if and only if the linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ is one-to-one.

Definition: A linear transformation T from a vector space V into a vector space W is a rule that assigns to each vector \mathbf{x} in V a unique vector $T(\mathbf{x})$ in W, such that

1. $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$, for all \mathbf{u}, \mathbf{v} in V
2. $T(c \mathbf{u})=c T(\mathbf{u})$ for all \mathbf{u} in V and all scalars c
$\Rightarrow T(c \vec{u}+d \vec{v})=C T(\vec{u})+d T(\vec{v})$
The kernel or null space of T is the set of all \mathbf{u} in V such that $T(\mathbf{u})=\mathbf{0}$. $\operatorname{ker}(T) \subset V$ (domain
The range of T is the set of all vectors in W of the form $T(\mathbf{x})$ for some \mathbf{x} in V. ${ }^{\text {null }}(\mathrm{ANI})$ of T) Example 5: True or false. $\quad \operatorname{ronge}(T)=\langle\vec{\omega}, \vec{w}=T \vec{x}|$, a The null space of A is the solution set of the equation $A \mathbf{x}=\mathbf{0} \cdot(\operatorname{col}(A) \quad$ for $\vec{x} \in V)$ * The null space of an $m \times n$ matrix is in \mathbb{R}^{m}. $\mathbb{R}^{(n)} \rightarrow \sharp$ cols of $A \quad \leq W$ (c) The column space of A is the range of the mapping $\mathbf{x} \mapsto A \mathbf{x}^{\text {the }}$, for sone $x \in \mathbb{R}^{n}$
$\begin{aligned} & \text { d If the equation } A \mathbf{x}=\mathbf{b} \text { is consistent for every } \mathbf{b} \text {, then } \operatorname{Col} A \text { is } \mathbb{R}^{m} \text {. } \operatorname{thm:~}_{\text {mon }} \text { (an find }\end{aligned}$
$\begin{gathered}\text { er The kernel of a linear transformation is a vector space, } \\ 3 \\ \vec{x}\end{gathered}=\left(\begin{array}{l}x_{1} \\ x_{n} \\ x_{n}\end{array}\right) s+1 \cdot \vec{b}=\overrightarrow{a_{1}} x_{1}+\ldots \vec{u}_{n} x_{n}$
