Section 4.2 Null Spaces, Column Spaces and Linear Transformations

The null space of a matrix: The null space of an $m \times n$ matrix A, written as Nul A, is the set of all solutions of the homogeneous equation $A\mathbf{x} = \mathbf{0}$. In set notation,

 $\operatorname{Nul} A = \{ \mathbf{x} : \mathbf{x} \text{ is in } \mathbb{R}^n \text{ and } A \mathbf{x} = \mathbf{0} \}$

Theorem: The null space of an $m \times n$ matrix A is a subspace of \mathbb{R}^n . Equivalently, the set of all solutions to a system $A\mathbf{x} = \mathbf{0}$ of m homogeneous linear equations in n unknowns is a subspace of \mathbb{R}^n .

Example 1 (An explicit description of Nul A): Find the spanning set for the null space of the matrix $\begin{bmatrix} 1 & -3 & 2 \\ 0 & 0 & 3 \end{bmatrix}$.

Example 2: Either use an appropriate theorem to show that the given set, W, is a vector space, or find a specific example to the contrary.

$$(1) \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} : a+b+c=2 \right\} \qquad \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \quad 0+0+0 \neq l, \quad \begin{pmatrix} 0 \\ 0 \end{pmatrix} \downarrow V$$

$$V = \left\{ \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} : 3a + b = c, a + b + 2c = 2d \right\}$$

$$V = \text{ well } CA$$

$$\Rightarrow V \text{ is a subspace of a matrix:}$$

$$V = \text{ well } CA$$

$$V = \text{ well } CA$$

$$\Rightarrow V \text{ is a subspace of a matrix:}$$

$$V = \text{ well } CA$$

$$\Rightarrow V \text{ is a subspace of a matrix:}$$

$$V = \text{ well } CA$$

$$\Rightarrow V \text{ is a subspace of a matrix:}$$

$$V = \text{ well } CA$$

$$\Rightarrow V \text{ is a subspace of a matrix:}$$

$$V = \text{ well } CA$$

1: {x, Ax = 0}

 $\overline{\text{Col } A}$, is the set of all linear combinations of the columns of A. If $A = [\mathbf{a}_1 \cdots \mathbf{a}_n]$, then

 $ColA = Span\{\mathbf{a}_1, \cdots, \mathbf{a}_n\} \xrightarrow{\mathbf{x}} \begin{pmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_n \end{pmatrix} \xrightarrow{\mathbf{x}} \begin{pmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_n \end{pmatrix}$

Theorem: The column space of an
$$m \times n$$
 matrix A is a subspace of \mathbb{R}^m .
 $ColA = \{\mathbf{b} : \mathbf{b} = A\mathbf{x} \text{ for some } \mathbf{x} \text{ in } \mathbb{R}^n\}$

$$A \times (z) \quad (1) \quad (1) \quad (z) \quad (z$$

<u>Remark</u>: The column space of an $m \times n$ matrix A is all of \mathbb{R}^m if and only if the equation vector $A\mathbf{x} = \mathbf{b}$ has a solution for each **b** in \mathbb{R}^m . col(A) = |R|

Example 3: Find A such that the given set is $\operatorname{Col} A$ Γ 1.

$$\mathbf{V} = \left\{ \begin{bmatrix} b-c\\ 2b+3d\\ b+3c-3d\\ c+d \end{bmatrix} : b,c,d \text{ real} \right\}$$

$$\mathbf{V} = \left\{ \begin{bmatrix} b-c\\ 2b+3d\\ c+3d \end{bmatrix} : b,c,d \text{ real} \right\}$$

$$\mathbf{V} = \left\{ \begin{bmatrix} b-c\\ 2b+3d\\ c+3d \end{bmatrix} : b,c,d \text{ real} \right\}$$

Contrast B	etween Nul	A and	Col A for	an <i>m</i> x n	Matrix A

Nul A	Col A
1 . Nul A is a subspace of \mathbb{R}^n .	1 . Col <i>A</i> is a subspace of \mathbb{R}^m .
2. Nul <i>A</i> is implicitly defined; that is, you are given only a condition $(A\mathbf{x} = 0)$ that vectors in Nul <i>A</i> must satisfy.	 Col A is explicitly defined; that is, you are told how to build vectors in Col A.
 It takes time to find vectors in Nul A. Row operations on [A 0] are required. 	 It is easy to find vectors in Col A. The columns of A are displayed; others are formed from them.
 There is no obvious relation between Nul A and the entries in A. 	 There is an obvious relation between Col A and the entries in A, since each column of A is in Col A.
5. A typical vector \mathbf{v} in Nul <i>A</i> has the property that $A\mathbf{v} = 0$.	 A typical vector v in Col A has the property that the equation Ax = v is consistent.
 Given a specific vector v, it is easy to tell if v is in Nul A. Just compute Av. 	 Given a specific vector v, it may take time to tell if v is in Col A. Row operations on [A v] are required.
7. Nul $A = \{0\}$ if and only if the equation $A\mathbf{x} = 0$ has only the trivial solution.	 Col A = ℝ^m if and only if the equation Ax = b has a solution for every b in ℝ^m.
8. Nul $A = \{0\}$ if and only if the linear trans- formation $\mathbf{x} \mapsto A\mathbf{x}$ is one-to-one.	8. Col $A = \mathbb{R}^m$ if and only if the linear trans- formation $\mathbf{x} \mapsto A\mathbf{x}$ maps \mathbb{R}^n onto \mathbb{R}^m .
a rule that assigns to each vector \mathbf{x} in V a un 1. $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$, for all \mathbf{u}, \mathbf{v} in 2. $T(\mathbf{u}) = \sigma T(\mathbf{v})$ for all \mathbf{v} in V and all \mathbf{v}	ique vector $T(\mathbf{x})$ in W , such that $ n V = T(c\vec{u} + d\vec{v}) = cT(\vec{u}) + d\vec{v} $ we have: $T(c\vec{u} + d\vec{v}) = cT(\vec{u}) + d\vec{v}$
2. $T(c\mathbf{u}) = cT(\mathbf{u})$ for all \mathbf{u} in V and all s	$Calars C = C = 0 + ber(T) \in V$
The range of T is the set of all vectors in W Example 5: True or false.	of the form $T(\mathbf{x})$ for some \mathbf{x} in V . $\mathbf{v}_{v} \mathbf{y}_{c}(\tau) = \int \vec{w}, \vec{w} \geq \tau$
a The null space of \underline{A} is the solution set	of the equation $A\mathbf{x} = 0$. ((1)(A)
X The null space of an $m \times n$ matrix is in	$\mathbb{R}^{m} \cdot \mathbb{R}^{m} \to \# \operatorname{cols} \bullet \mathbb{A} \qquad \leq \mathbb{W}$
\mathcal{G} The column space of A is the range of	the mapping $\mathbf{x} \mapsto A\mathbf{x}$. $\int \mathbf{f} \mathbf{w} \mathbf{s} \mathbf{w} \mathbf{x} \in \mathbf{R}^{n}$
\mathbf{d} If the equation $A\mathbf{x} = \mathbf{b}$ is consistent for	br every b , then Col A is \mathbb{R}^m .
The kernel of a linear transformation	is a vector space $\vec{x} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \leq 1$. $\vec{b} = \vec{a} \times 1 + \dots + \vec{b}$
3	