Section 4.3 Linear Independent Sets, Bases

An indexed set of vectors $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{p}\right\}$ in V is said to be linearly independent if the vector equation

$$
c_{1} \mathbf{v}_{1}+\cdots+c_{p} \mathbf{v}_{p}=\mathbf{0}
$$

has only the trivial solution, $c_{1}=0, \cdots, c_{p}=0$. op. :ff we of the vector is the multiple of the other.
The set $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{p}\right\}$ in V is said to be linearly dependent if (1) has nontrivial solution.
That is, if there are some weights, c_{1}, \cdots, c_{p}, not all zero, such that (1) holds.
chm
An indexed set $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{p}\right\}$ of two or more vectors, with $\mathbf{v}_{1} \neq \mathbf{0}$, is linearly dependent if and only if some \mathbf{v}_{j} (with $j>1$) is a linear combination of the preceding vectors $\mathbf{v}_{1}, \cdots, \mathbf{v}_{j-1}$.

Example 1: Let $p_{1}(t)=1, p_{2}(t)=t, p_{3}(t)=t^{2}, p_{4}(t)=4 t-1, p_{5}(t)=2 t^{2}-5 t+3$,
(1) is the set $\left\{p_{1}(t), p_{2}(t)\right\}$ linearly dependent?

$$
\text { No } \quad P_{2}(t)=t=t \cdot I=\underline{t} P_{1}(t) \text { is not a cost. }
$$

(2) is the set $\left\{p_{1}(t), p_{2}(t), p_{4}(t)\right\}$ linearly dependent?

$$
P_{4}(t)=4 t-1=4 P_{2}(t)-P_{1}(t)
$$

by the thu \Rightarrow liner dep.
(3) is the set $\left\{p_{1}(t), p_{2}(t), p_{3}(t)\right\}$ linearly dependent?
No
(4) is the set $\left\{p_{1}(t), p_{2}(t), p_{3}(t), p_{5}(t)\right\}$ linearly dependent?

$$
P_{5}(t)=2 t^{2}-5 t+3=2 P_{3}(t)-5 P_{2}(t)+3 P_{1}(t)
$$

by the \Rightarrow linear dep.

Definition: Let H be a subspace of a vector space V. An indexed set of vectors $\mathscr{B}=$ $\left\{\mathbf{b}_{1}, \cdots, \mathbf{b}_{p}\right\}$ in V is a basis for H if

1. \mathscr{B} is a linearly independent set, and
2. the subspace spanned by \mathscr{B} coincides with H; that is

$$
H=\operatorname{Span}\left\{\mathbf{b}_{1}, \cdots, \mathbf{b}_{p}\right\}
$$

Remark:

(1) Let A be an invertible $n \times n$ matrix, then the columns of A form a basis for \mathbb{R}^{n}.
(2) Let $\mathbf{e}_{1}, \cdots, \mathbf{e}_{n}$ be the columns of the $n \times n$ identity matrix I_{n}. The set $\left\{\mathbf{e}_{1}, \cdots, \mathbf{e}_{n}\right\}$ is
called the standard basis for \mathbb{R}^{n}.
(3) $S=\left\{1, t, t^{2}, \cdots, t^{n}\right\}$ is a standard basis for $\overparen{\mathbb{P}^{n} \rightarrow} \rightarrow$ rolynowinl of dogma
at most n.
Example 2: Find a basis for the set of vectors in \mathbb{R}^{2} on the line $y=-3 x$. Method 1. $\quad \Rightarrow\binom{x}{-j}$ is the basis $\left.x \in \mathbb{R}\right\} \quad \Leftrightarrow$ solve the ign on the line

$$
\binom{x}{-3 x}=x\binom{1}{-j}, x \in \mathbb{R}
$$

$$
3 x+y=0, x(y \text { ore } \Leftrightarrow \text { null (A) }
$$ the entries of the vector. $A=[3$,

ins defined on $\mathbb{R},\{t, \sin t, \sin 2 t, \sin t \cos t\}$

$$
\left\{\begin{array}{l}
\operatorname{Ret}(A)=[3, \\
x_{i}=s \\
3 x+y=0 \Rightarrow x=-\frac{5}{3} \\
\binom{x}{y}=\binom{-\frac{5}{3}}{s}=s\binom{-\frac{1}{3}}{1}
\end{array}\right.
$$

The Spanning Set Theorem: Let $S=\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{p}\right\}$ be a set in V, and $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{p}\right\}$.
a If one of the vectors in S, \mathbf{v}_{k} is a linear combination of the remaining vectors \Rightarrow in bus's $\left[\begin{array}{l}3 \\ 1\end{array}\right]$ S, then the set formed from S by removing \mathbf{v}_{k} still spans H.
b If $H \neq\{\mathbf{0}\}$, some subset of S is a basis for H.
Remark: :
$\tau g . \delta=\{t, \sin (t), \sin (2 t), \sin (t) \cos (t)\}$
$\operatorname{step} 1, \quad \sin (2 t) \stackrel{\operatorname{div} r \cdot 1 a .}{=} \underbrace{\sin (t) \cos (t)}_{4^{\text {th }} \text { vectur of the set }}$ or
$\operatorname{step}^{2} s i=\{t \sin (t) \sin (2 t)\}$ is the new set.
If S_{1} ig liveur indep, $\underset{\text { basis }}{\Rightarrow} S_{1}$ is the busis of S
(i) pick up 3 numbers ($3=$ \# of vectors in the set)

$$
\left.\begin{array}{l}
t=\frac{\pi}{2}, \quad\left(\begin{array}{ll}
\frac{\pi}{2}, & \sin \left(\frac{\pi}{2}\right)_{1}^{\prime} \\
t=\pi, & \sin \left(2-\frac{\pi}{2}\right)=0 \\
\pi, & \sin (\pi)=0
\end{array} \quad \sin (2 \pi)=0\right. \\
t=\frac{\pi}{4}, \quad
\end{array}\right)=A
$$

(ii) If $\operatorname{det}(A) \neq 0$, ov, A is invertluble
$\Rightarrow S_{1}$ is linear indep.

* the unethod cum be used ony to slaw linenv indop.
\Rightarrow the busis $=\{t, \sin (t), \sin 12 t\} s / c\left\{\begin{array}{l}\text { (1) } \begin{array}{l}\text { it cun } \text { span }^{2} \mathrm{~s} \\ \text { (2) linew indep. }\end{array}\end{array}\right.$

Bases for $\operatorname{Nul} A$ and $\operatorname{Col} A$:
Theorem: The pivot columns of a matrix A form a basis for $\operatorname{Col} A$.
Example 3: Find a basis for the set of vectors in set of real numbers \mathbb{R}^{3} in the plane $\overline{x-2 y+3 z}=0$.

$$
v=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \quad \ll
$$

$$
\begin{aligned}
& \text { Find } x, y, t \text { sit. } x-2 y+3 z=0 \\
& \operatorname{null}(A), \quad A=[1,-2,3] \\
& \text { coeft matrix }
\end{aligned} \quad \begin{aligned}
& 1 \text { egn } \\
& x y z
\end{aligned}
$$

$$
\operatorname{Rof}(A)=[\square,-2,3]
$$

$$
y=S \quad \& \quad z=t \text { ave free. }
$$

$$
\begin{aligned}
& x-2 y+3 z=0 \\
& \Leftrightarrow x=2 s-3 t \quad \Leftrightarrow\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
2 s-3 t \\
s \\
t
\end{array}\right) \\
&=\left(\begin{array}{c}
2 s \\
5 \\
0
\end{array}\right)+\left(\begin{array}{c}
-3 t \\
0 \\
t
\end{array}\right) \\
&=s\left(\begin{array}{l}
4 \\
1 \\
0
\end{array}\right)++\left(\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right) \\
& \Rightarrow \text { basis }=\left\{\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right)\right\}
\end{aligned}
$$

