Section 4.5 The Dimension of a Vector Space

<u>Recall</u>: Let *H* be a subspace of a vector space *V*. An indexed set of vectors $\mathscr{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_p\}$ in *V* is a basis for *H* if

- 1. \mathscr{B} is a linearly independent set, and
- 2. the subspace spanned by \mathscr{B} coincides with H; that is

 $H = \operatorname{Span}\{\mathbf{b}_1, \dots, \mathbf{b}_p\} \qquad \text{add}(\mathsf{for} n) \quad \mathsf{vector} \quad \vec{\mathbf{v}} \in V$ $\underbrace{\mathbf{Theorem:}}_{\text{taining more than } n \text{ vectors must be linearly dependent.}} \left\{ \mathbf{b}_1, \dots, \mathbf{b}_p \right\}, \text{ then any set in } V \text{ contractions of the set of the$ **<u>Theorem</u>**: If a vector space V has a basis of n vectors, then every basis of V must (and basis)consist of exactly *n* vectors. Tim The (b/c they **Definition:** If V is spanned by a finite set, then V is said to be finite-dimensional and are basis the dimension of V, written as dim V, is the number of vectors in a basis for V. Nin (cul(A)) = Yunk(A) The dimension of the zero vector space $\{0\}$ is defined to be zero. If V is not spanned by a finite set, then V is said to be infinite-dimensional. The Dimensions of Nul A and Col A: The dimension of Nul A is the number of free variables in the equation $A\mathbf{x} = \mathbf{0}$, and the dimension of Col A is the number of pivot columns in A. Example 1: Find a basis for the subspace and state the dimension. (1) $\begin{cases} s-2t \\ s+t \\ 3t \end{cases}$: $s,t \text{ in } \mathbb{R} \left\{ \begin{array}{c} s,t \text{ in } \mathbb{R} \\ \left\{ \begin{array}{c} s-2t \\ l+1 \end{array}\right\} = \left(\begin{array}{c} l-2 \\ l+1 \end{array}\right) \cdot \left(\begin{array}{c} s \\ t \end{array}\right) \cdot \left(\begin{array}{c} s \\ t \end{array}\right) \in \mathbb{R} \left\{ \begin{array}{c} y \\ t \end{array}\right\} \in \mathbb{R} \left\{ \begin{array}{c} y \\ t \end{array}\right\} = \left(\begin{array}{c} s \\ t \end{array}\right) \cdot \left(\begin{array}{c} s \\ t \end{array}\right) \in \mathbb{R} \left\{ \begin{array}{c} y \\ t \end{array}\right\} = \left(\begin{array}{c} s \\ t \end{array}\right) \cdot \left(\begin{array}{c} s \\ t \end{array}\right) \in \mathbb{R} \left\{ \begin{array}{c} y \\ t \end{array}\right\} = \left(\begin{array}{c} s \\ t \end{array}\right) \cdot \left(\begin{array}{c} s \\ t \end{array}\right) \in \mathbb{R} \left\{ \begin{array}{c} y \\ t \end{array}\right\} = \left(\begin{array}{c} s \\ t \end{array}\right) \cdot \left(\begin{array}{c} s \\ t \end{array}\right) = \left(\begin{array}{c} s \\ t \end{array}\right) \cdot \left(\begin{array}{c} s \\ t \end{array}\right) = \left(\begin{array}{c} s \\ t \end{array}\right) + \left(\begin{array}{c} s \\ t \end{array}\right) = \left(\begin{array}{c} s \\ t \end{array}\right) + \left(\begin{array}{c} s \\ t \end{array}\right) = \left(\begin{array}{c} s \\ t \end{array}\right) = \left(\begin{array}{c} s \\ t \end{array}\right) + \left(\begin{array}{c} s \\ t \end{array}\right) = \left(\begin{array}{c$

$$(2) \{(a,b,c): a+2b-c=0\}$$

$$(3) \{(a,b,c): a+2b-c=0\}$$

$$(3) \{(a,b,c): a+2b-c=0\}$$

Example 2: Find the dimension of the subspace of all vectors in set of real numbers \mathbb{R}^5 whose first and fifth entries are equal.

Theorem: Let H be a subspace of a finite-dimensional vector space V. Any linearly independent set in H can be expanded, if necessary, to a basis for H. Also, H is finite-dimensional and

$$\dim H \leq \dim V$$

<u>The Basis Theorem</u>: Let *V* be a *p*-dimensional vector space, $p \ge 1$.

- Any linearly independent set of exactly p elements in V is automatically a basis for V.
 Image: V.
- Any set of exactly *p* elements that spans *V* is automatically a basis for *V*.

() din (V) => set is liouv indep.

Example 3: The first four Hermite polynomials are 1, 2t, $-2 + 4t^2$, and $-12t + 8t^3$. Show that the first four Hermite polynomials form a basis of \mathbb{P}_3 .