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Section 4.5 The Dimension of a Vector Space

Recall: Let H be a subspace of a vector space V. An indexed set of vectors % =
{by,---,b,} in V is a basis for H if

1. £ is alinearly independent set, and

2. the subspace spanned by % coincides with H; that is
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Theorem: If a vector space V has a basis # = {by,---,b,} , then any set in V con-
taining more than n vectors must be linearly dependent. ey J2P ) X e by
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Theorem: If a vector space V has a basis of n vectors, then every basis of V must [
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consist of exactly n vectors.
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Definition: If V is spanned by a finite set, then V is said to be finite-dimensional and «"* "“Ls)
the dimension of V, written as dim V, is the number of vectors in a basis for V.
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If V is not spanned by a finite set, then V is said to be infinite-dimpénsional.
The Dimensions of Nul A and Col A: The dimension of Nul A is the number of free
variables in the equation Ax = 0, and the dimelﬁion of Col A is the number of pivot

The dimension of the zero vector space {0} is defined to be zero.
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Example 1: Find a basis for the subspace and state the dimension. (1) s+t
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Example 2: Find the dimension of the subspace of all vectors in set of real numbers

R> whose first and fifth entries are equal.
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Theorem: Let H be a subspace of a hmte— 1mens ﬁal vector’space V . Any linearly LS

independent set in H can be expanded, if necessary, to a basis for H. Also, H is finite-

dimensional and
dimH <dimV

The Basis Theorem: LetV be a p-dimensional vector space, p > 1.

* Any linearly independent set of exactly p elements in V is automatically a basis
u“)
for V. \ Ao l\l) 15 ot s? V.

* Any set of exactly p elements that spans V' is automatically a basis for V.
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Example 3: The first four Hermite polynomials are 1, 2¢, —2 + 42, and —12¢ + 8¢°.
Show that the first four Hermite polynomials form a basis of Ps.




