Section 4.5 The Dimension of a Vector Space

Recall: Let H be a subspace of a vector space V. An indexed set of vectors $\mathscr{B}=$ $\left\{\mathbf{b}_{1}, \cdots, \mathbf{b}_{p}\right\}$ in V is a basis for H if

1. \mathscr{B} is a linearly independent set, and
2. the subspace spanned by \mathscr{B} coincides with H; that is

$$
H=\operatorname{Span}\left\{\mathbf{b}_{1}, \cdots, \mathbf{b}_{p}\right\}
$$

Theorem: If a vector space V has a basis $\mathscr{B}=\left\{\mathbf{b}_{1}, \cdots, \mathbf{b}_{p}\right\}$, then $S=b_{b}$ any set in V contraining more than n vectors must be linearly dependent. \quad linear dep. $\boldsymbol{L}_{\mathrm{u}} \vec{u}$ can he
Theorem: If a vector space V has a basis of n vectors, then every basis of $V \underset{\text { combination of }}{\text { mitten os a }}$ a liar consist of exactly n vectors.
$\overrightarrow{b_{1}} \ldots \overrightarrow{L_{p}}\left(b_{c}\right.$ they
Definition: If V is spanned by a finite set, then V is said to be finite-dimensional and ave basis) the dimension of V, written as $\operatorname{dim} V$, is the number of vectors in a basis for V.

The dimension of the zero vector space $\{\boldsymbol{0}\}$ is defined to be zero.

$$
\operatorname{din}(\operatorname{col}(A))=\operatorname{runk}(A)
$$

If V is not spanned by a finite set, then V is said to be infinite-dimensional.
The Dimensions of $\operatorname{Nul} A$ and $\operatorname{Col} A$: The dimension of $\operatorname{Nul} A$ is the number of free variables in the equation $A \mathbf{x}=\mathbf{0}$, and the dimension of $\operatorname{Col} A$ is the number of pivot columns in A.

$$
\text { unllity }=\operatorname{dim}(\text { nl }(A))
$$

Example 1: Find a basis for the subspace and state the dimension.
(1) $\left\{\left[\begin{array}{c}s-2 t \\ s+t \\ 3 t\end{array}\right]\right.$:
s, t in $\mathbb{R}\}$

$$
\underbrace{\left(\begin{array}{c}
s-2 t \\
s+t \\
s+
\end{array}\right)}_{y}=\underbrace{\left(\begin{array}{cc}
1 & -2 \\
1 & 1 \\
0 & 3
\end{array}\right)}_{A} \cdot \underbrace{\binom{s}{t}}_{x} \Leftrightarrow\left\{\begin{array}{l}
\left\{y: y=A x, x=\binom{\delta}{t}, s+t \mathbb{R}\right\} \\
v_{c o l}(A)
\end{array}\right)
$$

(2) $\{(a, b, c): a+2 b-c=0\}$

Example 2: Find the dimension of the subspace of all vectors in set of real numbers \mathbb{R}^{5} whose first and fifth entries are equal.

$$
\begin{aligned}
& \left\{\left(\begin{array}{l}
a \\
b \\
c \\
d \\
a
\end{array}\right), a b c d \in \mathbb{R}\right\} \quad\left(\begin{array}{l}
a \\
b \\
c \\
d \\
a
\end{array}\right)=\left(\begin{array}{l}
a \\
0 \\
0 \\
0 \\
a
\end{array}\right)+\left(\begin{array}{l}
0 \\
b \\
0 \\
0 \\
0
\end{array}\right)+\left(\begin{array}{l}
0 \\
0 \\
c \\
0 \\
0
\end{array}\right)+\left(\begin{array}{l}
0 \\
0 \\
0 \\
d \\
0
\end{array}\right) \\
& \text { (1) Un vector in the ref }
\end{aligned}
$$ Theorem: Let H be a subspace of a finite-dimensional vector space V. Any linearly tho che independent set in H can be expanded, if necessary, to a basis for H. Also, H is finitedimensional and

$$
\operatorname{dim} H \leq \operatorname{dim} V
$$

The Basis Theorem: Let V be a p-dimensional vector space, $p \geq 1$.

- Any linearly independent set of exactly p elements in V is automatically a basis for V.

$$
\| \operatorname{dim}(V): \Rightarrow \text { sot spoons } V \text {. }
$$

- Any set of exactly p elements that spans V is automatically a basis for V.

$$
\text { II } \operatorname{din}(V) \quad \Rightarrow \text { set is linus indie. }
$$

Example 3: The first four Hermite polynomials are 1, $2 t,-2+4 t^{2}$, and $-12 t+8 t^{3}$. Show that the first four Hermite polynomials form a basis of \mathbb{P}_{3}.

