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Section 4.5 The Dimension of a Vector Space

Recall: Let H be a subspace of a vector space V . An indexed set of vectors B =
{b1, · · · ,bp} in V is a basis for H if

1. B is a linearly independent set, and

2. the subspace spanned by B coincides with H; that is

H = Span{b1, · · · ,bp}
Theorem: If a vector space V has a basis B = {b1, · · · ,bp} , then any set in V con-

taining more than n vectors must be linearly dependent.

Theorem: If a vector space V has a basis of n vectors, then every basis of V must

consist of exactly n vectors.

Definition: If V is spanned by a finite set, then V is said to be finite-dimensional and

the dimension of V , written as dim V , is the number of vectors in a basis for V .

The dimension of the zero vector space {0} is defined to be zero.

If V is not spanned by a finite set, then V is said to be infinite-dimensional.

The Dimensions of Nul A and Col A: The dimension of Nul A is the number of free

variables in the equation Ax = 0, and the dimension of Col A is the number of pivot

columns in A.

Example 1: Find a basis for the subspace and state the dimension. (1)
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Example 2: Find the dimension of the subspace of all vectors in set of real numbers

R5
whose first and fifth entries are equal.

Theorem: Let H be a subspace of a finite-dimensional vector space V . Any linearly

independent set in H can be expanded, if necessary, to a basis for H. Also, H is finite-

dimensional and

dim H  dim V

The Basis Theorem: Let V be a p-dimensional vector space, p � 1.

• Any linearly independent set of exactly p elements in V is automatically a basis

for V .

• Any set of exactly p elements that spans V is automatically a basis for V .

Example 3: The first four Hermite polynomials are 1, 2t, �2+ 4t
2
, and �12t + 8t

3
.

Show that the first four Hermite polynomials form a basis of P3.
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