Section 5.1 Eigenvectors and Eigenvalues

Example 1: Let $A = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix}$, $\mathbf{u} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. The images of \mathbf{u} and \mathbf{v} under multiplication by A are shown in Figure .

Note that, $A\mathbf{v}$ is just $2\mathbf{v}$. So A only stretches \mathbf{v} .

<u>Definition</u>: An eigenvector of an $n \times n$ matrix A is a <u>nonzero</u> vector \mathbf{x} such that $A\mathbf{x} = \lambda \mathbf{x}$ for some scalar λ .

A scalar λ is called an eigenvalue of A if there is a nontrivial solution **x** of A**x** = λ **x**, such an **x** is called an eigenvector corresponding to λ .

Example 2: Let $A = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$, show that 7 is an eigenvalue of A and find the corresponding eigenvectors.

 $A \times = \lambda \times$ $A \times - \lambda I \times = 0, I \text{ is the identify multix}$ $(A - \lambda I) \times = 0$ eligendectory exists, if the

.

obst
$$(A - \lambda I) = 0$$

G characteristic egn of A .

Glep2. The eigen vectors of λ we just non-trival sol of $(A - \lambda I) \times = 0$.

we just the eig-build of A.

eg: A:
$$\binom{1}{5}\binom{1}{2}$$
 Glepz.
Uet $(A - AI) = 0$ (d)
Step 1, we need to find λ
sind that (A) is true.
Ull non-zero solutions of (A)
 $(A - 7I) \cdot X = 0$ XA
 $(A - 7I) \cdot X = 0$ $A - 20$
 $(A - 7I) \cdot X = 0$ $A - 20$
 $(A - 7I) \cdot X = 0$
 $(A - 7I) \cdot X = 0$ $A - 20$
 $(A - 7I) \cdot X = 0$
 $(A - 7I) \cdot X = 0$ $A - 7I = (-6 - 6)$
 $(A - 7I) \cdot (A - 4) = 0$
 $(A - 7I) \cdot (A - 4) = 0$
 $A - 7I = (-6 - 6)$
 $(A - 7I) \cdot (A - 4) = 0$
 $A - 7I = (-6 - 6)$
 $(A - 7I) \cdot (A - 4) = 0$
 $A - 7I = (-6 - 6)$
 $(A - 7I) \cdot (A - 4) = 0$
 $A - 7I = (-6 - 6)$
 $(A - 7I) \cdot (A - 4) = 0$
 $A - 7I = (-6 - 6)$
 $(A - 7I) \cdot (A - 4) = 0$
 $A - 7I = (-6 - 6)$
 $(A - 7I) \cdot (A - 4) = 0$
 $A - 7I = (-6 - 6)$
 $(A - 7I) \cdot (A - 4) = 0$
 $A - 7I = (-6 - 6)$
 $(A - 7I) \cdot (A - 4) = 0$
 $A - 7I = (-6 - 6)$
 $(A - 7I) \cdot (A - 4) = 0$
 $A - 7I = (-6 - 6)$
 $(A - 7I) \cdot (A - 4) = 0$
 $A - 7I = (-6 - 6)$
 $(A - 7I) \cdot (A - 4) = 0$
 $A - 7I = (-6 - 6)$
 $(A - 7I) \cdot (A - 4) = 0$
 $A - 7I = (-6 - 6)$
 $(A - 7I) \cdot (A - 4) = 0$
 $A - 7I = (-6 - 6)$
 $(A - 7I) \cdot (A - 4) = 0$
 $A - 7I = (-6 - 6)$
 $(A - 7I) \cdot (A - 4) = 0$
 $A - 7I = (-6 - 6)$
 $(A - 7I) \cdot (A - 4) = 0$
 $A - 7I = (-6 - 6)$
 $(A - 7I) \cdot (A - 4) = 0$
 $A - 7I = (-6 - 6)$
 $(A - 7I) \cdot (A - 4) = 0$
 $A - 7I = (-6 - 6)$
 $(A - 7I) \cdot (A - 4) = 0$
 $(A - 7I) \cdot (A - 4) = 0$
 $(A - 7I) \cdot (A - 4) = 0$
 $(A - 7I) \cdot (A - 4) = 0$
 $(A - 7I) \cdot (A - 4) = 0$
 $(A - 7I) \cdot (A - 4) = 0$
 $(A - 7I) \cdot (A - 4) = 0$
 $(A - 7I) \cdot (A - 4) = 0$
 $(A - 7I) \cdot (A - 4) = 0$
 $(A - 7I) \cdot (A - 4) = 0$
 $(A - 7I) \cdot (A - 4) = 0$
 $(A - 7I) \cdot (A - 4) = 0$
 $(A - 7I) \cdot (A - 4) = 0$
 $(A - 7I) \cdot (A - 4) = 0$
 $(A - 7I) \cdot (A - 4) = 0$
 $(A - 7I) \cdot (A - 4) = 0$
 $(A - 7I) \cdot (A - 4) = 0$
 $(A - 7I) - (A - 7I) =$

ey:
$$A = \begin{pmatrix} 3 & 0 \\ 2 & 1 \end{pmatrix}$$

slep 1.
solve for
$$\lambda$$
 $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
 $det (A - \lambda I) = 0$
 $det \begin{pmatrix} 3 - \lambda & 0 \\ 2 & 1 - \lambda \end{pmatrix} = 0$

$$(\lambda - 3) (\lambda - 1) = 0$$

 $\Rightarrow \lambda_1 = 1, \lambda_2 = 3$
are eig-val of A.

step 2.

$$\lambda_{1} = 1$$

$$T_{ind} \times (\neq 0) \quad \text{such that}$$

$$(A - \lambda_{1}I) \times = 0$$

$$A - \lambda_{1}I = \begin{pmatrix} 3 - 1 \\ 2 \end{pmatrix} \begin{pmatrix} 0 \\ 2 \end{pmatrix}$$

$$= \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$

set
$$x_{1} = 5$$
 to be fire
=) $x_{1} = 0$
sol $\{x = s \begin{pmatrix} 0 \\ 1 \end{pmatrix}, s \in Ik\}$
 \therefore eigen space of $\lambda_{1} = 1$.
 $\lambda_{2} = 3$
 $T = Ind \times sch$.
 $(A - \lambda_{2}I) \times = 0$
 $A - \lambda_{2}I = \begin{pmatrix} 3-3 & 0 \\ 2 & 1-3 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 2+3 \end{pmatrix}$
 $x_{1} = s, \Rightarrow x_{1} = s$
 $\begin{cases} x = s \begin{pmatrix} 1 \\ 1 \end{pmatrix}, s \in Ik \\ \vdots \\ s \in y - space of \lambda_{2} = 3. \end{cases}$

Remark: λ is an eigenvalue of an $n \times n$ matrix A if and only if the equation

$$(A - \lambda I)\mathbf{x} = \mathbf{0} \tag{1}$$

has a nontrivial solution.

The set of all solutions of (1) is just the null space of the matrix $A - \lambda I$, so this set is a subspace of \mathbb{R}^n .

It is called the eigenspace of A corresponding to λ , which consists of the zero vector and all the eigenvectors corresponding to λ . e^{-1}_{1} space - null space of $(A - \lambda I)$

Example 3: Let $A = \begin{bmatrix} 3 & 0 \\ 2 & 1 \end{bmatrix}$. The eigenvalues of A are 1 and 3. Find the eigenspace corresponding to each eigenvalue.

 $\left(\begin{array}{c} \pm 0 \end{array}\right) B = \left(\begin{array}{c} \pm 0 \end{array}\right)$

$$A\mathbf{x} = 0\mathbf{x} \tag{2}$$

has a nontrivial solution. But (2) is equivalent to $A\mathbf{x} = \mathbf{0}$, which has a nontrivial solution if and only if A is not invertible. Thus

0 is an eigenvalue of A if and only if A is not invertible.

of an $n \times n$ matrix A, then the set $\{\mathbf{v}_1, \dots, \mathbf{v}_r\}$ is linearly independent.