Section 5.1 Eigenvectors and Eigenvalues
$\underline{\text { Example 1: }}$ Let $A=\left[\begin{array}{cc}3 & -2 \\ 1 & 0\end{array}\right], \mathbf{u}=\left[\begin{array}{c}-1 \\ 1\end{array}\right], \mathbf{v}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$. The images of \mathbf{u} and \mathbf{v} under multiplication by A are shown in Figure.

Note that, $A \mathbf{v}$ is just $2 \mathbf{v}$. So A only stretches \mathbf{v}.
Definition: An eigenvector of an $n \times n$ matrix A is a nonzero vector \mathbf{x} such that $A \mathbf{x}=\lambda \mathbf{x}$ for some scalar λ.
A scalar λ is called an eigenvalue of A if there is a nontrivial solution \mathbf{x} of $A \mathbf{x}=\lambda \mathbf{x}$, such an \mathbf{x} is called an eigenvector corresponding to λ.
Example 2: Let $A=\left[\begin{array}{ll}1 & 6 \\ 5 & 2\end{array}\right]$, show that 7 is an eigenvalue of A and find the corresponding eigenvectors.
the sols of $\operatorname{cet}(A-\lambda 1)=0$

$$
\begin{aligned}
& A x=\lambda x \\
& A x-\lambda I x=0, I \text { is the } \\
& \text { identity matrix } \\
& (A-\lambda I) \cdot x=0
\end{aligned}
$$

the eigenvector exists, if the
homos equ hos a non - trinal sol.

$$
(\text { sig vector } \neq 0)
$$

$$
\underbrace{\operatorname{det}(A-\lambda I)=0}_{L_{3} \text { chancteristic egn of } A \text {. }}
$$

Step 2.
The eigen vectors of λ we just nou-trival sol of $(A-\lambda I) x=0$
ley: $A=\left(\begin{array}{ll}1 & 6 \\ 5 & 2\end{array}\right)$

$$
\begin{equation*}
\operatorname{det}(A-\lambda I)=0 \tag{x}
\end{equation*}
$$

step 1, we heed fo find λ such that (x) is true.

$$
\begin{aligned}
& \operatorname{det}\binom{1-\lambda, 6}{5,2-\lambda}=0 \quad \text { are eigen-vectovs of } \lambda=7
\end{aligned}
$$

$$
\begin{aligned}
& \lambda^{2}-3 \lambda-28=0 \quad \lambda_{2}=-4 . \\
& (\lambda-7)(\lambda+4)=0 \quad A-\lambda_{2} I=\left(\begin{array}{ll}
5 & 6 \\
5 & 6
\end{array}\right) \\
& \text { are eigen-vectovs of } \lambda=7
\end{aligned}
$$

$$
\text { eig-vals: } \quad \lambda_{1}=7 \quad \& \quad \lambda_{2}=-4
$$

Step 2.

$$
\lambda_{1}=7
$$

solve

$$
(A-7 I) \cdot x=0 \quad x^{*}
$$

all won-zero solutions of $(x-x)$
set $x_{2}=s, x_{1}=-\frac{6}{5} s$

$$
\Rightarrow x=s\binom{-\frac{6}{5}}{1}, s+\mathbb{R}, s \neq 0
$$

by:

$$
A=\left(\begin{array}{ll}
3 & 0 \\
2 & 1
\end{array}\right)
$$

set $x_{2}=s$ to be fro

$$
\Rightarrow \quad x_{1}=0
$$

sol $\left\{x=s\binom{0}{1}, s \in \mathbb{R}\right\}$

$$
\begin{array}{r}
\operatorname{det}(A-\lambda I)=0 \\
\operatorname{det}\left(\begin{array}{cc}
3-\lambda & 0 \\
2 & 1-\lambda
\end{array}\right)=0 \\
(\lambda-3)(\lambda-1)=0 \\
\Rightarrow \quad \lambda_{1}=1, \lambda_{2}=3
\end{array}
$$

are $e^{i} y$-val of A.
step 2.

$$
\lambda_{1}=1
$$

Find $x(\neq 0)$ such that

$$
\begin{aligned}
&(A-\lambda, 1) x=0 \\
& A-\lambda_{1} I=\left(\begin{array}{cc}
3-1, & 0 \\
2, & 1-1
\end{array}\right) \\
&=\left(\begin{array}{ll}
2 & 0 \\
2 & 0
\end{array}\right)
\end{aligned}
$$

Remark: λ is an eigenvalue of an $n \times n$ matrix A if and only if the equation

$$
\begin{equation*}
(A-\lambda I) \mathbf{x}=\mathbf{0} \tag{1}
\end{equation*}
$$

has a nontrivial solution.
The set of all solutions of (1) is just the null space of the matrix $A-\lambda I$, so this set is a subspace of \mathbb{R}^{n}.
It is called the eigenspace of A corresponding to λ., which consists of the zero vector and all the eigenvectors corresponding to λ. e^{-}- space $=$null space of $(A-\lambda I)$
Example 3: Let $A=\left[\begin{array}{ll}3 & 0 \\ 2 & 1\end{array}\right]$. The eigenvalues of of $\hat{\lambda}$ are 1 and 3. Find the eigenspace corresponding to each eigenvalue.

Theorem: The eigenvalues of a triangular matrix are the entries on its main diagonal.
Remark: The matrix A has an eigenvalue of 0 if and only if the equation

$$
\begin{equation*}
A \mathbf{x}=0 \mathbf{x} \tag{2}
\end{equation*}
$$

has a nontrivial solution. But (2) is equivalent to $A \mathbf{x}=\mathbf{0}$, which has a nontrivial solution if and only if A is not invertible. Thus \qquad
0 is an eigenvalue of A if and only if A is not invertible.
Example 4: Find the eigenvalues of the matrix $\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 3 & 4 \\ 0 & 0 & 2\end{array}\right] \rightarrow$ upper triangular matrix
Find λ si
$\begin{aligned} & \operatorname{det}(A-\lambda I)=0(-\lambda) \cdot \operatorname{dot}\left(\begin{array}{cc}3-\lambda & 4 \\ 0 & 2-\lambda\end{array}\right)=0 \quad \Rightarrow \quad \lambda_{1}=0 \quad \lambda_{2}=3 \quad \lambda_{3}=2 . \\ & \operatorname{det}\left(\begin{array}{ccc}-\lambda & 0 & 2 \\ 0 & 3-\lambda & 4 \\ 0 & 0 & 2-\lambda\end{array}\right)=0 \quad(-\lambda)(\lambda-3) \cdot(\lambda-2)=0 \quad \text { diagonal eutrios }\end{aligned}$
Theorem: If $\mathbf{v}_{1}, \cdots, \mathbf{v}_{r}$ are eigenvectors that correspond to distinct eigenvalues $\lambda_{1}, \cdots, \lambda_{r}$
of an $n \times n$ matrix A, then the set $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{r}\right\}$ is linearly independent.

