## Section 5.2 The Characteristic Equation

Recall: Suppose a square matrix $A$ has been reduced to an echelon form $U$ by row replacements and row interchanges. If there are $r$ row interchanges, then

$$
\operatorname{det} A=(-1)^{r} \operatorname{det} U
$$

Notice that $\operatorname{det} U=u_{11} \cdot u_{22} \cdots u_{n n}$, which is the product of the diagonal entries of $U$. If $A$ is invertible, the entries $u_{i i}$ are all pivots. Otherwise, at least $u_{n n}$ is zero. Thus

$$
\operatorname{det} A= \begin{cases}(-1)^{r} \cdot\binom{\text { product of }}{\text { pivots in } U} & \text { when } \mid A \text { is invertible } \\ 0 & \text { when } A \text { is not invertible }\end{cases}
$$

The Invertible Matrix Theorem (continued): Let $A$ be an $n \times n$ matrix. Then $A$ is invertible if and only if

1. The number 0 is not an eigenvalue of $A$.
2. The determinant of $A$ is not zero.

Theorem: Let $A$ and $B$ be $n \times n$ matrices.
a. $A$ is invertible if and only if $\operatorname{det} A \neq 0$.
b. $\operatorname{det} A B=(\operatorname{det} A)(\operatorname{det} B)$.
c. $\operatorname{det} A^{T}=\operatorname{det} A$.
d. If $A$ is triangular, then $\operatorname{det} A$ is the product of the entries on the main diagonal of $A$.
e. A row replacement operation on $A$ does not change the determinant. A row interchange changes the sign of the determinant. A row scaling also scales the determinant by the same scalar factor.

Definition: The scalar equation

$$
A x=\lambda x
$$

$$
\operatorname{det}(A-\lambda I)=0 \quad A x-\lambda I x=0
$$

is called the characteristic equation of $A$. $\rightarrow$ hes won-trivial sol A scaler $\lambda$ is an eigenvalue of an $n \times n$ matrix $A$ if and only if $\lambda$ satisfies the characteristic equation (1).

$$
\Rightarrow \operatorname{det}(A-\lambda I)=0
$$

$$
x^{2}(\lambda-1)=0
$$

$$
\lambda_{1}=\lambda_{2}=0, n \times 1(\lambda=d=2
$$

$\lambda_{3}=\mid \mathrm{man}^{\prime}\left(\lambda_{3}=1\right)=1$ the degree of this polynomial in $\lambda$
Remark: $\operatorname{det}(A-\lambda I)$ is a polynomial in $\lambda$. $\lambda$ (chavelevistic) $\Rightarrow$ the rise of $A$.
It can be shown that if $A$ is an $n \times n$ matrix, then $\operatorname{det}(A-\lambda I)$ is a polynomial of degree $n$ called the characteristic polynomial of $A$.
The (algebraic) multiplicity of an eigenvalue $\lambda$ is its multiplicity as a root of the characteristic equation. $\quad \#$ of times, $\lambda$ appears as root in the Example 2: Find the characteristic polynomial of the matrix $\left[\begin{array}{ccc}3 & 0 & 0 \\ 2 & 1 & 4 \\ 1 & 0 & 4\end{array}\right]$, using either a cofactor expansion or the special formula for $3 \times 3$ determinants described in section 3.1. Find the eigenvalues and their multiplicities.

$$
\operatorname{det}\left(\begin{array}{ccc}
3-\lambda & 0 & 0 \\
2 & 1-\lambda & 4 \\
1 & 0 & 4-\lambda
\end{array}\right)=0 \quad \begin{array}{ll}
\lambda_{1}=3, \lambda_{2}=1, \lambda_{3}=4 \\
\text { wultiplity for all of them }=1
\end{array}
$$

$$
(3-\lambda) \operatorname{det}\left(\begin{array}{cc}
1-\lambda & 4 \\
0 & 4-\lambda
\end{array}\right)=0
$$

$$
(3-\lambda)(1-\lambda)(4-\lambda)=0
$$

$$
\underbrace{(3-\underbrace{\lambda-\lambda}(\lambda-1)^{i n}(\lambda-4)}_{\substack{\text { characteristic } \\ \text { eq. }}}=0
$$

Example 3: List the real eigenvalues of $A=\left[\begin{array}{llll}3 & 0 & 0 & 0 \\ 6 & 2 & 0 & 0 \\ 0 & 3 & 2 & 0 \\ 2 & 3 & 3 & -5\end{array}\right]$, repeated according to their multiplicities.
$A$ is a lower triangular motile.

$$
\left.\begin{array}{rl}
(\text { the } 5.1)
\end{array}\right)\left\{\begin{array}{lll}
\lambda_{1}=3 & \text { multiplicity } \\
\lambda_{1}=\lambda_{3}=2 & 2 & 1 \\
\lambda_{3}=-5 & 1 & A P=P B
\end{array}\right.
$$

Definition: If $A$ and $B$ are $n \times \stackrel{e}{\text { evils }}$ matrices, then $A$ is similar to $B$ if there is an invertible matrix $P$ such that $P^{-1} A P=B$, or, equivalently, $A=P B P^{-1}$.
We say that $A$ and $B$ are similar. Changing $A$ into $P^{-1} P$ is called a similarity transfornation.

Theorem: If $n \times n$ matrices $A$ and $B$ are similar, then they have the same characteristic polynomial and hence the same eigenvalues (with the same multiplicities).

Remark:
(1) If $A$ \& $B$ hare the same characlovistic polynowinls, $A 8$ are not reccesavily similar to each other.

$$
A=\left(\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right) \quad B=\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right)
$$

(2) Similarity $\neq$ vow equivalent.

