Section 5.3 Diagonalization

Example 1: Let $D=\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right]$, find D^{2}, D^{3}, and D^{k}. Review: $A x=\lambda x$ (3) Find $r \neq 0$ st.

0

$(A-\lambda I) x=0$. (G) $A \cup B$,
liver independent.
(6) $A \sim B$, there exists an
invertinsle matrix
(2) $\operatorname{det}(A-\lambda I)=0\binom{$ chavackistic }{ equation }
(4) if spar of λ

$$
C \text { is a pulynowid of regina }
$$

sit. $A=P B P^{-1}$

Remark: If $A=P D P^{-1}$ for some invertible P and diagonal D, then A^{k} is easy to compute.

Definition: A square matrix is diagonalizable if A is similar to a diagonal matrix.
The Diagonalization Theorem: An $n \times n$ matrix A is diagonalizable if only if A has n linearly independent eigenvectors.

In fact, $A=P D P^{-1}$, with D a diagonal matrix, if and only if

- the columns of P are n linearly independent eigenvectors of A.
- the diagonal entries of D are eigenvalues of A that correspond, respectively, to the eigenvectors in P.

Example 2: Use the Diagonalization Theorem to find the eigenvalues of A and a basis for each eigenspace. $A=\left[\begin{array}{ccc}3 & 0 & 0 \\ -3 & 4 & 9 \\ 0 & 0 & 3\end{array}\right]=\left[\begin{array}{ccc}3 & 0 & -1 \\ 0 & 1 & -3 \\ 1 & 0 & 0\end{array}\right]\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 3\end{array}\right]\left[\begin{array}{ccc}0 & 0 & 1 \\ -3 & 1 & 9 \\ -1 & 0 & 3\end{array}\right]$.

Section 5.3 Diagonalization

Example 1: Let $D=\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right]$, find D^{2}, D^{3}, and D^{k}. the suppose $D=\left(\begin{array}{lll}a_{1} & & 0 \\ a_{2} & \\ 0 & & a_{n}\end{array}\right)_{\text {nine. }}$
$\underbrace{D^{k}}_{\underbrace{D \cdot D D}_{k-\operatorname{cop} \operatorname{ies}}}=\left(\begin{array}{cccc}a_{1}^{k} & & 0 \\ & a_{2}^{k} & & \\ 0 & & a_{n}^{k}\end{array}\right)_{n \cdot n}$
Remark: If $A=P D P^{-1}$ for some invertible P and diagonal D, then A^{k} is easy to compute.
$A^{k}=\underbrace{P D P^{-1} \cdot P D D P^{-1} \cdot P D P^{-1} \ldots P D P^{-1}}_{k \text { copies }}=P \cdot D^{k} \cdot P^{-1}$ Hove exists an inveriable P <copies sit. $A=P D P^{-1}$
Definition: A square matrix is diagonalizable if A is similar to a diagonal matrix.
The Diagonalization Theorem: An $n \times n$ matrix A is diagonalizable if only if A has n linearly independent eigenvectors.

In fact, $A=P D P^{-1}$, with D a diagonal matrix, if and only if

- the columns of P are n linearly independent eigenvectors of A.
- the diagonal entries of D are eigenvalues of A that correspond, respectively, to the eigenvectors in P.

\vec{u}_{2} un linearly index e-vectiod $\lambda_{2}=4$
$\vec{\omega}_{3}$

$$
\lambda_{3}=3
$$

Example 3: Diagonalize the matrix $A=\left[\begin{array}{ccc}1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1\end{array}\right]$.
Solution: Step 1. Find the eigenvalues of A.

Step 2. Find three linearly independent eigenvectors of A.

Step 3. Construct P from the vectors in step 2.

Step 4. Construct D from the corresponding eigenvalues.
eg.

$$
\begin{aligned}
& \operatorname{det}(A-\lambda I)=0 \\
& \operatorname{det}\left(\begin{array}{ccc}
1-\lambda & 3 & 3 \\
-3 & -5-\lambda & -3 \\
3 & 3 & 1-\lambda
\end{array}\right)=0 \\
& -(\lambda-1)(\lambda+2)^{2}=0 \quad \Rightarrow \quad \lambda_{1}=1, \lambda_{2}=\lambda_{3}=-2 \text {. } \\
& \lambda_{1}=1 \quad\left(A-\lambda_{1} I\right) x=0, \quad x \neq 0 \\
& A-\lambda I=\left(\begin{array}{ccc}
0 & 3 & 3 \\
-3 & -6 & -3 \\
3 & 3 & 0
\end{array}\right) \xrightarrow{\text { EROS }}\left(\begin{array}{ccc}
3 & 3 & 0 \\
0 & 3 & 3 \\
0 & 0 & 0
\end{array}\right) \\
& \text { set } x_{3}=s, \Rightarrow x_{2}=-s, x_{1}=s \\
& x=s(\underbrace{\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)}_{\vec{u}_{1}}, s=1, s \neq s \neq 0 \\
& A-\lambda_{2} I=\left(\begin{array}{ccc}
3 & 3 & 3 \\
-3 & -3 & -3 \\
3 & 3 & 3
\end{array}\right) \xrightarrow{E R O_{s}}\left(\begin{array}{lll}
3 & 3 & 3 \\
0 & 0 & 0 \\
0 & \frac{0}{3} & 0
\end{array}\right) \\
& x_{2}=s \quad x_{3}=t, \Rightarrow x_{1}=-s-t \\
& x=\left(\begin{array}{c}
-s-t \\
s \\
t
\end{array}\right)=s \underbrace{\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right)}_{\overrightarrow{u_{2}}}+t \underbrace{\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)}_{\overrightarrow{u_{3}}}, s+\epsilon \mathbb{R},
\end{aligned}
$$

$$
\begin{aligned}
& \left.\begin{array}{ll}
p=\left\{\overrightarrow{u_{1}}\right. & \overrightarrow{u_{2}}
\end{array} \overrightarrow{u_{3}}\right\}=\left(\begin{array}{ccc}
1 & -1 & -1 \\
-1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right) \quad p=\left(\begin{array}{ccc}
1 & -1 & -2 \\
-1 & 1 & 2 \\
1 & 0 & 0
\end{array}\right) \otimes \\
& P=\left(\begin{array}{ccc}
-1 & 1 & -1 \\
1 & -1 & 0 \\
0 & 1 & 1
\end{array}\right) \quad D=\left(\begin{array}{cc}
-2 & 0 \\
& 1 \\
0 & -2
\end{array}\right)
\end{aligned}
$$

$$
\Rightarrow \text { limey indepart ejenvecturs) }
$$

Theorem: An $n \times n$ matrix with n distinct eigenvalues is diagonalizable.

Theorem:

$$
p \leq n
$$

Let A be an $n \times n$ matrix whose distinct eigenvalues are $\lambda_{1}, \ldots, \lambda_{p}$.
a. For $1 \leq k \leq p$, the dimension of the eigenspace for λ_{k} is less than or equal to the multiplicity of the eigenvalue λ_{k}.
b. The matrix A is diagonalizable if and only if the sum of the dimensions of the eigenspaces equals n, nd this happens if and only if (i) the characteristic polynomial factors completely into linear factors and (ii) the dimension of the eigenspace for each λ_{k} equals the multiplicity of $\lambda_{k} \longrightarrow \operatorname{dim}\left(u_{n l}(A-\lambda I)\right)=$ munlitiplacy
c. If A is diagonalizable and \mathcal{B}_{k} is a basis for the eigenspace corresponding to λ_{k} for each k, then the total collection of vectors in the sets $\mathcal{B}_{1}, \ldots, \mathcal{B}_{p}$ forms an eigenvector basis for \mathbb{R}^{n}.

$$
\stackrel{\text { basis }}{\Longrightarrow} p \text { is ubusls }
$$

Example 4: A is a 5×5 matrix with two eigenvalues. One eigenspace is threedimensional, and the other eigenspace is two dimensional. Is A diagonalizable? Why?

$$
\rightarrow \text { Yes, thu (b) }
$$

