Section 5.3 Diagonalization

Example 1: Let
$$D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$
, find D^2 , D^3 , and D^k .
be view: $A x = \lambda X$ (3) Thuk $x \neq 0$ St.
($A - \lambda I$) $x = 0$.
($A - \lambda I$) $x = 0$.
($A - \beta$, there exists and
($A - \lambda I$) $x = 0$.
($A - \beta$, there exists and
($A - \beta$, there

Definition: A square matrix is diagonalizable if *A* is similar to a diagonal matrix.

The Diagonalization Theorem: An $n \times n$ matrix A is diagonalizable if only if A has \overline{n} linearly independent eigenvectors.

In fact, $A = PDP^{-1}$, with *D* a diagonal matrix, if and only if

- the columns of *P* are *n* linearly independent eigenvectors of *A*.
- the diagonal entries of *D* are eigenvalues of *A* that correspond, respectively, to the eigenvectors in *P*.

Example 2: Use the Diagonalization Theorem to find the eigenvalues of *A* and a basis

For each eigenspace.
$$A = \begin{bmatrix} 3 & 0 & 0 \\ -3 & 4 & 9 \\ 0 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 3 & 0 & -1 \\ 0 & 1 & -3 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ -3 & 1 & 9 \\ -1 & 0 & 3 \end{bmatrix}.$$

Section 5.3 Diagonalization

Example 1: Let
$$D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$
, find D^2 , D^3 , and D^k
thus, suppose $D = \begin{pmatrix} a_1 & a_2 \\ 0 & 0_1 \end{pmatrix}_{n \in \mathbb{N}}$
 $D = \begin{pmatrix} a_1^k & 0 \\ 0 & 0_2 \end{pmatrix}_{n \in \mathbb{N}}$
 $D = \begin{pmatrix} a_1^k & 0 \\ 0 & 0_2 \end{pmatrix}_{n \in \mathbb{N}}$

<u>Remark:</u> If $A = PDP^{-1}$ for some invertible *P* and diagonal *D*, then A^k is easy to compute. $A^k = PDP^+ PDP^+ PDP^+ = P^* D^k \cdot P^+$ $A^k = PDP^+ PDP^+ = P^* D^k \cdot P^+$ $A^k = PDP^+$ **Definition:** A square matrix is diagonalizable if *A* is similar to a diagonal matrix.

The Diagonalization Theorem: An $n \times n$ matrix A is diagonalizable if only if A has \overline{n} linearly independent eigenvectors.

In fact, $A = PDP^{-1}$, with *D* a diagonal matrix, if and only if

- the columns of *P* are *n* linearly independent eigenvectors of *A*.
- the diagonal entries of *D* are eigenvalues of *A* that correspond, respectively, to the eigenvectors in *P*.

Example 2: Use the Diagonalization Theorem to find the eigenvalues of A and a basis

for each eigenspace.
$$A = \begin{bmatrix} 3 & 0 & 0 \\ -3 & 4 & 9 \\ 0 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 3 & 0 & -1 \\ 0 & 1 & -3 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ -3 & 1 & 9 \\ -1 & 0 & 3 \end{bmatrix}$$

Example 3: Diagonalize the matrix
$$A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix}$$
.

Solution: Step 1. Find the eigenvalues of A.

Step 2. Find three linearly independent eigenvectors of A.

Step 3. Construct P from the vectors in step 2.

Step 4. Construct D from the corresponding eigenvalues.

$$P = \left\{ \begin{array}{c} 1 & -1 & -1 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \end{array} \right\} = \left(\begin{array}{c} 1 & -1 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{array} \right) \qquad P = \left(\begin{array}{c} 1 & -1 & -2 \\ -1 & 1 & 2 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array} \right) \\ \overrightarrow{u}_{1} \quad \overrightarrow{u}_{2} \quad \overrightarrow{u}_{1} \\ \overrightarrow{u}_{1} \overrightarrow{u}_{1} \\$$

Math 26500

1111 VO

92-1

م^{11,1}1

=) (would indeport of years)

Theorem: An $n \times n$ matrix with *n* distinct eigenvalues is diagonalizable.

Theorem:

PEN Let A be an $n \times n$ matrix whose distinct eigenvalues are $\lambda_1, \ldots, \lambda_n$.

- a. For $1 \le k \le p$, the dimension of the eigenspace for λ_k is less than or equal to the multiplicity of the eigenvalue λ_k .
- b. The matrix A is diagonalizable if and only if the sum of the dimensions of the eigenspaces equals n and this happens if and only if (i) the characteristic polynomial factors completely into linear factors and (ii) the dimension of the Um (unil (A-JI)) = multip eigenspace for each λ_k equals the multiplicity of λ_k .

c. If A is diagonalizable and \mathcal{B}_k is a basis for the eigenspace corresponding to λ_k for each k, then the total collection of vectors in the sets $\mathcal{B}_1, \ldots, \mathcal{B}_p$ forms an eigenvector basis for \mathbb{R}^n . $\gamma = \gamma (|p^n|)$ Example 4: A is a 5 × 5 matrix with two eigenvalues. One eigenspace is three-D is ususus

dimensional, and the other eigenspace is two dimensional. Is A diagonalizable? Why?

-) Yes, thm (b)