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Section 5.3 Diagonalization

Example 1: Let D =


2 0

0 3

�
, find D2

, D3
, and Dk

.

Remark: If A = PDP�1
for some invertible P and diagonal D, then Ak

is easy to

compute.

Definition: A square matrix is diagonalizable if A is similar to a diagonal matrix.

The Diagonalization Theorem: An n⇥ n matrix A is diagonalizable if only if A has

n linearly independent eigenvectors.

In fact, A = PDP�1
, with D a diagonal matrix, if and only if

• the columns of P are n linearly independent eigenvectors of A.

• the diagonal entries of D are eigenvalues of A that correspond, respectively, to

the eigenvectors in P.

Example 2: Use the Diagonalization Theorem to find the eigenvalues of A and a basis

for each eigenspace. A =
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Example 3: Diagonalize the matrix A =

2

4
1 3 3

�3 �5 �3

3 3 1

3

5.

Solution: Step 1. Find the eigenvalues of A.

Step 2. Find three linearly independent eigenvectors of A.

Step 3. Construct P from the vectors in step 2.

Step 4. Construct D from the corresponding eigenvalues.
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Theorem: An n⇥n matrix with n distinct eigenvalues is diagonalizable.

Theorem:

Example 4: A is a 5 ⇥ 5 matrix with two eigenvalues. One eigenspace is three-

dimensional, and the other eigenspace is two dimensional. Is A diagonalizable? Why?
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