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Section 5.7 Applications to Differential Equations

Consider a system of differential equations:

x0
1
= a11x1 + · · ·+a1nxn

x0
2
= a21x1 + · · ·+a2nxn

...

x0n = an1x1 + · · ·+annxn

(1)

We can write the system as a matrix differential equation

x0(t) = Ax(t)

where

A solution of equation (1) is a vector-valued function that satisfies (1) for all t in some

interval of real numbers, such as t � 0.

Superposition: : If u and v are solutions of x0(t) =Ax(t), then cu+dv is also a solution.

Fundamental set of solutions to (1):

If A is n⇥n, then there are n linearly independent functions in a fundamental set, and

each solution of (1) is a unique linear combination of these n functions.

That is, a fundamental set of solutions is a basis for the set of all solutions of (1), and

the solution set is an n-dimensional vector space of functions.

Initial value problem: . If a vector x0 is specified, then the initial value problem is to

construct the (unique) function x such that

x0(t) = Ax(t)
x(0) = x0

1
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where cold are arbitrary real numbers.

thin : X
'
= Ax , At IR

"? the system has n- linearly indep solutions

viii.. . v7
det : { v7, ñ , - . in] is called founda

mental set of solutions .

any solutionuaf X' = AX, u= quit civat . . . Cutin , c, - - Cu HR
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Example 1: Consider


x0

1
(t)

x0
2
(t)

�
=


3 0

0 �5

�
x1(t)
x2(t)

�
. Here the matrix A is diagonal, we

call the system decoupled. Find solutions of this system.

Remark:

Example 2: The circuit in Figure can be described by the differential equation


x0

1
(t)

x0
2
(t)

�
=


�(1/R1 +1/R2)/C1 1/(R2C1)

1/(R2C2) �1/(R2C2)

�
x1(t)
x2(t)

�

where x1(t) and x2(t) are the voltages across the two capacitors at time t. Suppose

resistor R1 is 1 ohm, R2 is 2 ohms, capacitor C1 is 1 farad, and C2 is .5 farad, and

suppose there is an initial charge of 5 volts on capacitor C1 and 4 volts on capacitor C2.

Find formulas for x1(t) and x2(t) that describe how the voltages change over time.
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In general , A is not decoupled .

③ ×
'
= Ax

,

construct the solution as I
> =J
d- Scalar
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.

out

substitute I=Ñe
"
into ③

réftv =eIAv→

Ai
'
= rj

⇒ ( rif ) is an e:S
- pair of A .
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has u distinct eig -values .
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Remark: In Figure , the origin is called an attractor or sink of the dynamical system

because all trajectories are drawn into the origin.

If the eigenvalues in Example 2 were positive instead of negative, the corresponding

trajectories would be similar in shape, but the trajectories would be traversed away from

the origin. In such a case, the origin is called a repeller, or source, of the dynamical

system.
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Example 3: Suppose a particle is moving in a planar force field and its position vector

x satisfies x0(t) = Ax(t) and x0(t) = Ax(t), where A =


4 �5

�2 1

�
, x0 =


2.9
2.6

�
Solve

this initial value problem for t � 0, and sketch the trajectory of the particle.

Remark: In Figure , the origin is called an saddle point of the dynamical system be-

cause some trajectories approach the origin at first and then change direction and move

away from the origin. A saddle point arises whenever the matrix A has both positive

and negative eigenvalues.
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Decoupling a dynamical system : For any dynamical system x0(t) = Ax(t), if A is

diagonalizable, i.e. A = PDP�1
.

Example 4: Make a change of variable that decouples the equation x0(t) = Ax(t).
Write the equation x(t) = Py(t) that leads to the uncoupled system y0(t) = Dy(t), spec-

ifying P and D. A =


1 �2

3 4

�

5
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Complex eigenvalues : Let l and l be a pair of complex eigenvalues of A, associated

with complex eigenvectors v and v. So two solutions of x0(t) = Ax(t) are

Example 5: Construct the general solution of x0(t) = Ax(t) involving complex eigen-

functions and then obtain the general real solution. Describe the shapes of typical

trajectories. A =


3 1

�2 1

�

6

Feat & Feit
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Complex eigenvalues : Let l and l be a pair of complex eigenvalues of A, associated

with complex eigenvectors v and v. So two solutions of x0(t) = Ax(t) are

Example 5: Construct the general solution of x0(t) = Ax(t) involving complex eigen-

functions and then obtain the general real solution. Describe the shapes of typical

trajectories. A =


3 1

�2 1

�

6
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