Section 5.7 Applications to Differential Equations

Consider a system of differential equations: (ODES)

$$
\begin{align*}
& x_{1}^{\prime}=a_{11} x_{1}+\cdots+a_{1 n} x_{n} \text { ○ } x_{1} \ldots x_{n} \text {, thy we all } \\
& x_{2}^{\prime}=a_{21} x_{1}+\cdots+a_{2 n} x_{n} \quad \text { function of } t \text {. } \\
& \begin{array}{l}
\vdots \\
x_{n}^{\prime}=a_{n 1} x_{1}+\cdots+a_{n n} x_{n}
\end{array} \tag{1}\\
& \text { (2) } a_{11} \ldots a_{14} \\
& \text { ute all cost. }
\end{align*}
$$

We can write the system as a matrix differential equation

$$
\begin{aligned}
& \mathbf{x}^{\prime}(t)=A \mathbf{x}(t) \\
& \text { where } \\
& x^{\prime}(t)=\left(\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
\vdots \\
x_{n}^{\prime}(t)
\end{array}\right) \quad A=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{n 1} \\
a_{21} & \cdots & a_{2 n} \\
\vdots & & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right) \\
& \vec{x}(t)=\left(\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
\vdots \\
x_{(}(t)
\end{array}\right)
\end{aligned}
$$

A solution of equation (1) is a vector-valued function that satisfies (1) for all t in some interval of real numbers, such as $t \geq 0$. Superposition: : If \mathbf{u} and \mathbf{v} are solutions of $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$, then $c \mathbf{u}+d \mathbf{v}$ is also a solution. the: $x^{\prime}=A x, A \in \mathbb{R}^{n \cdot n}$, the system has n-livening indep solutions

$$
\vec{V}_{1} \vec{V}_{0} \ldots \vec{V}_{n}
$$

dat: $\left\{\vec{u}_{1}, \vec{v}_{2} \ldots \vec{V}_{n}\right\}$ is culled foundamentul set of solutions.

Fundamental set of solutions to (1):

If A is $n \times n$, then there are n linearly independent functions in a fundamental set, and each solution of (1) is a unique linear combination of these n functions.

$$
\text { bung solutionucg } x=A X, n=C_{1} \overrightarrow{V_{1}}+C_{2} \vec{v}_{2}+\ldots \ln _{n} \vec{V}_{n}, C_{1} \ldots C_{n} \in \mathbb{R}
$$

That is, a fundamental set of solutions is a basis for the set of all solutions of (1), and the solution set is an n-dimensional vector space of functions.
def: general solution can be wrttion us $y=c_{1} \overrightarrow{V_{1}}+c_{2} \vec{V}_{2}+\ldots+c_{n} \vec{V}_{n}, c_{1} \cdots c_{n} \in \mathbb{R}$ Initial value problem: . If a vector \mathbf{x}_{0} is specified, then the initial value problem is to construct the (unique) function \mathbf{x} such that

$$
\begin{aligned}
& \mathbf{x}^{\prime}(t)=A \mathbf{x}(t) \\
& \mathbf{x}(0)=\mathbf{x}_{0} \lessdot \text { initial condition (IC) } \\
& \qquad \begin{array}{l}
\text { (} ~
\end{array} \text {) } \\
& 1
\end{aligned}
$$

$\underline{\text { Example 1: }}$ Consider $\left[\begin{array}{l}x_{1}^{\prime}(t) \\ x_{2}^{\prime}(t)\end{array}\right]=\widetilde{\left[\begin{array}{cc}3 & 0 \\ 0 & -5\end{array}\right]} \cdot\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]$. Here the matrix A is diagonal, we call the system decoupled. Find solutions of this system.

$$
\left\{\begin{array}{l}
x_{1}^{\prime}(t)=3 x_{1}(t) \\
x_{2}^{\prime}(t)=-5 x_{2}(t)
\end{array}\right.
$$

$$
x_{1} \text { : guess } x_{1}=e^{r t} \text {, } r \text { is unknown. }
$$

Target: find r
Remark:
substitute $e^{r t}$ into (1) \& solve for r.

$$
\begin{aligned}
\left(e^{r t}\right)^{\prime} & =3 e^{r t} \\
r e^{r t} & =3 e^{r t} \\
r & =3
\end{aligned}
$$

Example 2: The circuit in Figure can be described by the differential equation $x_{1}(0)=5$

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-\left(1 / R_{1}+1 / R_{2}\right) / C_{1} & 1 /\left(R_{2} C_{1}\right) \\
1 /\left(R_{2} C_{2}\right) & -1 /\left(R_{2} C_{2}\right)
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

$$
x_{2}(0)=4
$$

where $x_{1}(t)$ and $x_{2}(t)$ are the voltages across the two capacitors at time t. Suppose resistor R_{1} is 1 ohm, R_{2} is 2 ohms, capacitor C_{1} is 1 farad, and C_{2} is .5 farad, and suppose there is an initial charge of 5 volts on capacitor C_{1} and 4 volts on capacitor C_{2}. Find formulas for $x_{1}(t)$ and $x_{2}(t)$ that describe how the voltages change over time.
$\rightarrow x_{2}=e^{r t}, r$ is unknown.
substitute x_{c} into (2)

$$
\begin{aligned}
\left(e^{r t}\right)^{\prime} & =-5 e^{r t} \\
r e^{r t} & =-5 e^{r t} \\
r & =-5
\end{aligned}
$$

$\Rightarrow e^{-5 t}$ is a solution for $x_{2}(t)$.

In general, A is not decoupled.
(3) $x^{\prime}=A x$,
construct the solution us
\vec{V} \& r are unknown.
s $x=\vec{v} e^{r t}$ sculor
cost. repents
on t
substitute $\vec{x}=\vec{V} e^{r+}$ into (3)

$$
\begin{aligned}
r g^{r+} \vec{V} & =e^{r+} A \vec{V} \\
A \vec{V} & =r \vec{V}
\end{aligned}
$$

$\Rightarrow(r, \vec{v})$ is an eig-puiv of A
In this course, we focus on A which hos n distract $e^{\text {eg -values. }}$
tho: each eis-puir $\left(\lambda_{i}, \overrightarrow{v_{i}}\right)$ will give us ore linearly indep. solution.

$$
\vec{v}_{i} e^{\lambda_{i} t}
$$

Eg 2.

$$
A=\left(\begin{array}{cc}
-1.5 & 0.5 \\
1 & -1
\end{array}\right) \times(0)=\binom{5}{4}
$$

$$
\left\{\begin{array} { l }
{ \lambda _ { 1 } = - 0 . 5 } \\
{ \vec { V } _ { 1 } = (\begin{array} { l }
{ 1 } \\
{ 2 }
\end{array}) }
\end{array} \quad \left\{\begin{array}{l}
\lambda_{2}=-2 \\
\vec{v}_{2}=\binom{-1}{1}
\end{array}\right.\right.
$$

general solution,

$$
\vec{x}(t)=\binom{x_{1}(t)}{x_{2}(t)}=c_{1} v_{1} e^{\lambda_{1} t}+c_{2} v_{2} e^{\lambda_{2} t}
$$

$c_{1} 8 c_{2}$ cure constants.

$$
\begin{equation*}
=c_{1}\binom{1}{2} e^{-0.5 t}+c_{2}\binom{-1}{1} e^{-2 t} \tag{4}
\end{equation*}
$$

we know $x(0)=\binom{S}{4}$. substitute $t=0$ into (4)

$$
\begin{aligned}
\underbrace{\binom{5}{4}}_{\text {given }} & =\underbrace{c_{1}\binom{1}{2} e^{-0 \cdot 5 \cdot 0}+c_{2}\binom{-1}{1}}_{\text {substitute to into the geveral sol. }} e^{-2 \cdot 0} \\
& =c_{1}\binom{1}{2}+c_{2}\binom{-1}{1} \\
& =\left(\begin{array}{cc}
1 & -1 \\
2 & 1
\end{array}\right) \cdot\binom{1}{c_{2}}
\end{aligned}
$$

$$
c_{1}=3 \quad \& \quad c_{2}=-2
$$

Solution:

$$
\binom{x_{1}(t)}{x_{2}(t)}=\vec{x}(t)=3\binom{1}{2} e^{-0.5 t}+(-2)\binom{-1}{1} e^{-2 t}
$$

OR.

$$
\left\{\begin{array}{l}
x_{1}(t)=3 e^{-0.5 t}+2 e^{-2 t} \\
x_{2}(t)=6 e^{-0.5 t}-2 e^{-2 t}
\end{array}\right.
$$

Remark: In Figure, the origin is called an attractor or sink of the dynamical system because all trajectories are drawn into the origin.
If the eigenvalues in Example 2 were positive instead of negative, the corresponding trajectories would be similar in shape, but the trajectories would be traversed away from the origin. In such a case, the origin is called a repeller, or source, of the dynamical system.
(1) Jistluct veguthe vol

$$
\ell \text { phase diagram. }
$$

e.values,
$\rightarrow \operatorname{sink} /$ attractor.
(2) fishing
\rightarrow solve/
sepellor.

Example 3: Suppose a particle is moving in a planar force field and its position vector
 this initial value problem for $t \geq 0$, and sketch the trajectory of the particle.

$$
\left\{\begin{array}{l}
\lambda_{1}=6, \quad \vec{v}_{1}=\binom{-5}{2} \\
\lambda_{2}=-1 \vec{v}_{2}=\binom{1}{1} \\
\text { general solution: } y=c_{1} \cdot \vec{v}_{1} e^{\lambda_{1} t}+c_{2} \cdot \vec{v}_{2} \cdot e^{\lambda_{2} t}, c_{1} \& c_{2} \text { are constants. }
\end{array}\right.
$$

Remark: In Figure, the origin is called an saddle point of the dynamical system because some trajectories approach the origin at first and then change direction and move away from the origin. A saddle point arises whenever the matrix A has both positive and negative eigenvalues.
(3) If
f le veal

$$
\Rightarrow \text { saddle point }
$$

$$
\begin{align*}
& \binom{x_{1}(t)}{x_{2}(t)}=\vec{y}=c_{1}\binom{-5}{2} e^{t t}+c_{2}\binom{1}{1} e^{-t} \\
& \left\{\begin{array}{l}
x_{1}(t)=-3 c_{1} e^{6 t}+c_{2} e^{-t} \\
x_{2}(t)=2 c_{1} e^{6 t}+c_{2} e^{-t}
\end{array}\right. \tag{5}\\
& \text { I. W.P. (sole for } \\
& x_{1}(0)=2.9=-5 c_{1}+c_{2} \\
& x_{2}(0)=2.6=2 c_{1}+c_{2} \\
& \Rightarrow\left\{\begin{array}{l}
C_{1}=-3 / 70 \\
C_{2}=188 / 70
\end{array}\right. \\
& \left\{\begin{array}{l}
x_{1}(t)=+\frac{3}{70} \cdot 5 e^{6 t}+\frac{188}{70} e^{-t} \\
x_{2}(t)=-\frac{3}{70} \cdot 2 e^{6 t}+\frac{188}{70} e^{-t}
\end{array}\right.
\end{align*}
$$

Decoupling a dynamical system : For any dynamical system $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$, if A is diagonalizable, i.e. $A=P D P^{-1}$.

Example 4: Make a change of variable that decouples the equation $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$. Write the equation $\mathbf{x}(t)=P \mathbf{y}(t)$ that leads to the uncoupled system $\mathbf{y}^{\prime}(t)=D \mathbf{y}(t)$, specifying P and $D . A=\left[\begin{array}{cc}1 & -2 \\ 3 & 4\end{array}\right]$

Complex eigenvalues: Let λ and $\bar{\lambda}$ be a pair of complex eigenvalues of A, associated with complex eigenvectors \mathbf{v} and $\overline{\mathbf{v}}$. So two solutions of $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$ are

$$
\vec{v} e^{\lambda+} \text { \& } \vec{v} e^{\vec{\lambda} t}
$$

Example 5: Construct the general solution of $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$ involving complex eigenfunctions and then obtain the general real solution. Describe the shapes of typical trajectories. $A=\left[\begin{array}{cc}-3 & 2 \\ -1 & -1\end{array}\right]$
$\operatorname{det}\left(\begin{array}{cc}-3-\lambda & 2 \\ -1 & -1-\lambda\end{array}\right)=0$

$$
\begin{aligned}
& (\lambda+3)(\lambda+1)+2=0 \\
& \lambda^{2}+\lambda+3 \lambda+3+2=0 \\
& \underbrace{\lambda^{2}+4 \lambda+4}+1=0
\end{aligned}
$$

Complex eigenvalues: Let λ and $\bar{\lambda}$ be a pair of complex eigenvalues of A, associated with complex eigenvectors \mathbf{v} and $\overline{\mathbf{v}}$. So two solutions of $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$ are

$$
\begin{array}{cl}
(\lambda+2)^{2}=-1 & \lambda=a+b_{i} \\
(\lambda+2)^{2} \quad \iota^{i^{2}=-1} & \bar{\lambda}=a-i_{i}^{2} \\
\lambda+2 & = \pm i \\
\lambda & =-2 \pm i
\end{array}
$$

Example 5: Construct the general solution of $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$ involving complex eigenfunctions and then obtain the general real solution. Describe the shapes of typical trajectories. $A=\left[\begin{array}{cc}3 & 1 \\ -2 & 1\end{array}\right]$

$$
\operatorname{veal}(\lambda) \quad \operatorname{img}(\lambda)
$$

$$
\begin{gathered}
\lambda=-2+i, \quad u=-2, b=1 \\
(A-\lambda I) \cdot w=0 \\
\left(\begin{array}{cc}
-1-i & 2 \\
-1 & 1-i
\end{array}\right),\binom{p}{q}=0
\end{gathered}
$$

From the $2^{\text {nu l }}$ row

$$
\begin{array}{r}
\Rightarrow p+(1-i) q=0 \\
p=(1-i) q
\end{array}
$$

$$
i\binom{-1}{0}
$$

set $q=1, \quad p=1-i$
e'yen vector $\vec{V}=\binom{1-i}{1}=\binom{1}{1}+\binom{-i}{0}$

$$
\operatorname{ve}(\vec{v})=\binom{1}{1} \quad \operatorname{ing}(\vec{v})=\binom{-1}{0}
$$

$\bar{V}=\binom{1+i}{1}$ is the e-vector of $\bar{\lambda}$,
yeverul sol:
$\vec{y}(t)=c_{1} \vec{v} e^{\lambda t}+c_{2} \overrightarrow{\vec{V}} e^{\overrightarrow{\lambda t}}, c_{1} \& c_{2}$ are cost.
vent solution: $\quad \lambda=-2+i, V$

$$
\left.\left.\begin{array}{rl}
x_{1}(t) \\
x_{2}(t)
\end{array}\right)=\vec{y}_{1}=\left[\binom{1}{1} \cos (t)-\binom{-1}{0} \sin (t)\right] e^{-2 t}\right] \quad e^{-2 t}
$$

$\vec{y}_{1} \& \vec{y}_{2}$ are 2 linewny inches solutions.
*. you can also construct the solution using \bar{v} \& $\bar{\lambda}$

$$
\begin{aligned}
& A=\left(\begin{array}{cc}
-3 & 2 \\
-1 & -1
\end{array}\right) \text { solue } X^{\prime}=A x . \\
& \left\{\begin{array} { l }
{ \lambda = - 2 + i } \\
{ v = (\begin{array} { c }
{ 1 - i } \\
{ 1 }
\end{array}) }
\end{array} \quad \left\{\begin{array}{l}
\bar{\lambda}=-2-i \\
\bar{v}=\binom{1+i}{1}
\end{array}\right.\right.
\end{aligned}
$$

10 mplax general solution

$$
\vec{y}=\binom{x_{1}(t)}{x_{2}(t)}=c_{1} v e^{-2+i}+c_{2} \bar{v} e^{-2-i}
$$

pich up $\left\{\begin{array}{l}\lambda=-2+i \\ v=\binom{1-i}{1}=\binom{1}{1}+\binom{-i}{0}=\binom{1}{1}+i\binom{-1}{0}\end{array}\right.$

$$
\begin{array}{ll}
a=-2(\operatorname{Re}(\lambda)) & \operatorname{Re}(v)=\binom{1}{1} \\
b=1(\operatorname{ing}(\lambda)) & \operatorname{ing}(v)=\binom{-1}{0}
\end{array}
$$

$$
\begin{aligned}
& \binom{x_{1}(t)}{x_{1}(t)}=\vec{y}_{1}(t)=\left[\binom{1}{1} \cos (t)-\binom{-1}{0} \sin (t)\right] e^{-2 t} \\
& \left.\binom{x_{1}(t)}{\left.x_{1}+t\right)}=\vec{y}_{2}(t)=\left[\begin{array}{l}
1 \\
1
\end{array}\right) \sin (t)+\binom{-1}{0} \cos (t)\right] e^{-2 t}
\end{aligned}
$$

geveral solution

$$
\begin{aligned}
& \vec{y}(t)=c_{1} \vec{y}_{1}(t)+c_{2} \vec{y}_{2}(t), \quad c_{1} \& c_{2} \text { ave constants. } \\
& \vec{y}^{2}(t)=c_{1} e^{-2 t} \cdot\binom{\cos (t)+\sin (t)}{\cos (t)} \\
& +c_{2} e^{-2 t} \cdot\binom{\sin (t)-\cos (t)}{\sin (t)}
\end{aligned}
$$

(1) complex e'genvalues \rightarrow spival
(2) fistinet hey veal e.vuls sink/attractor
(3) distinct positive veul eivals, source/vepoller.
(4) veul e.vals with opposite signs suddle point.

