Section 6.1 Inner Product, Length, Orthogonality

Definition: Let \mathbf{u} and \mathbf{v} be vectors in \mathbb{R}^{n},

$$
\mathbf{u}=\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right], \text { and } \mathbf{v}=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]
$$

then the inner product, also referred to as a dot product, of \mathbf{u} and \mathbf{v} is

$$
u \cdot v=\underbrace{u^{+}}_{<\rightarrow \text { sid matrix }} v=\left[\begin{array}{llll}
u_{1} & u_{2} & \cdots & u_{n}
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n} \in \mathbb{R}
$$

Theorem: Let \mathbf{u}, \mathbf{v} and \mathbf{w} be vectors in \mathbb{R}^{n}, and let c be a scalar. Then
a. $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u} \quad(A B \neq B A)$
b. $(\mathbf{u}+\mathbf{v}) \cdot \mathbf{w}=\mathbf{u} \cdot \mathbf{w}+\mathbf{v} \cdot \mathbf{w} \quad u \cdot u=u^{+} u$
c. $(c \mathbf{u}) \cdot \mathbf{v}=c(\mathbf{u} \cdot \mathbf{v})=\mathbf{u} \cdot(c \mathbf{v})$

$$
=u_{1}^{2}+v_{0}^{2}+\ldots+u_{n}^{2}
$$

d. $\mathbf{u} \cdot \mathbf{u} \geq 0$, hand $\mathbf{u} \cdot \mathbf{u}=0$ if and only if $\mathbf{u}=\mathbf{0}$

Definition: The length (or norm) of a \mathbf{v} is the nonnegative scaler $\|\mathbf{v}\|$ defined by

$$
\|\mathbf{v}\|=\sqrt{\mathbf{v} \cdot \mathbf{v}}=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}}, \text { and }\|\mathbf{v}\|^{2}=\mathbf{v} \cdot \mathbf{v}
$$

For any scalar c,

$$
\|c \mathbf{v}\| \stackrel{\mathbf{t}}{=}|c|\|\mathbf{v}\|
$$

Example 1: Find a unit vector in the direction of $\vec{u} \in \mathbb{R}^{n}$ a vector of length (nom) $=1$.

$$
\|u\|=\sqrt{(-2)^{2}+4^{2}+(-3)^{2}}=\sqrt{29}
$$

$$
\frac{\vec{u}}{\|\vec{u}\|}
$$

$$
\frac{u}{11 n \|}=\frac{1}{\sqrt{29}}\left(\begin{array}{c}
-2 \\
4 \\
-3
\end{array}\right)
$$

$$
\left\|\frac{\vec{u}}{\|\vec{a}\|}\right\|=\left|\frac{1}{\|\vec{u}\|}\right| \cdot\|\vec{u}\|=1
$$

Definition: For \mathbf{u} and \mathbf{v} in \mathbb{R}^{n}, the distance between \mathbf{u} and \mathbf{v}, written as $\operatorname{dist}(\mathbf{u}, \mathbf{v})$, is the length of the vector $\mathbf{u}-\mathbf{v}$,
$d^{\prime} s+(u \cdot v)=\|v-v\| \geqslant 2$
$\|u-v\|=\|-(v-u)\|$
$=|-\|\mid \cdot\| v-u \|$ fist $(v, v)=\|v-u\|$

$$
\begin{aligned}
d: s t(x, y) & =\|x-y\| \\
& =\left\|\binom{3}{7}\right\|=\sqrt{3^{2}+7^{2}}=\sqrt{58}
\end{aligned}
$$

Orthogonal vectors: Two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^{n} are orthogonal to each other if $\mathbf{u} \cdot \mathbf{v}=$ $0 . \mid$ Zero vector is orthogonal to every vector in \mathbb{R}^{n}.

The PythagoreanTheorem: Two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^{n} are orthogonal to each other if and only if $\|\mathbf{u}+\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}$.
(1) (1) def.

$$
\begin{aligned}
x \cdot y=x+y & =12 \cdot 2+3 \cdot(-3)+(-5) \cdot 3 \\
& =0 \Rightarrow x 8 y \text { are owthogond }
\end{aligned}
$$

Example 3: Determine which pairs of vectors are orthogonal
(1) $\mathbf{x}=\left[\begin{array}{c}12 \\ 3 \\ -5\end{array}\right], \mathbf{y}=\left[\begin{array}{c}2 \\ -3 \\ 3\end{array}\right] \quad$ (2) $\frac{\text { hm }}{x+y}=\left(\begin{array}{c}14 \\ 0 \\ -2\end{array}\right)$
(2) $\mathbf{x}=\left[\begin{array}{c}-3 \\ 7 \\ 4 \\ 0\end{array}\right], \mathbf{y}=\left[\begin{array}{c}1 \\ -8 \\ 15 \\ -7\end{array}\right]$
clack if $\|x+y\|^{2}=\|x\|^{2}+\|y\|^{2}$

$$
\|x+y\|^{2}=14^{2}+0^{2}+(-2)^{2}
$$

$$
\|x\|^{2}=12^{2}+3^{2}+(-5)^{2}
$$

$$
\|y\|^{2}=2^{2}+(-3)^{2}+3^{2}
$$

$\dot{z} \omega \mathbb{R}^{n} \rightarrow w^{\perp}=\left\{v \in \mathbb{R}^{n}, v \cdot y=v, y \in W\right\}$
Definition: If a vector \mathbf{z} is orthogonal to every vector in a subspace W of \mathbb{R}^{n}, then \mathbf{z} is said to be orthogonal to W.||The set of all vectors that are orthogonal to W is called the orthogonal component of
(complement) W and is denoted by W^{\perp}. (perpendicular)

1. A vector \mathbf{x} is in W^{\perp} if and only if \mathbf{x} is orthogonal to every vector in a set that spans W.
2. W^{\perp} is a subspace of \mathbb{R}^{n}.

Theorem: Let A be an $m \times n$ matrix. The orthogonal complement of the row space of A is the null space of A, \mid and the orthogonal complement of the column space of A is the null space of A^{T} :

Row space of $A \in \mathbb{R}^{m}$
$\operatorname{Ron}(A)=$ span of all rows of A
(1) If $x \in \operatorname{unll}(A), \quad A x=0$

$$
\Rightarrow \quad x \cdot v=0 \text {, for any } V \in \operatorname{ROW}^{W}(A)
$$

(2) $x \cdot V=0$ for any $v \in \operatorname{Row}(A)$

$$
\Rightarrow A x=0 \text {, or, } x \text { is in nil }(A)
$$

