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Section 6.1 Inner Product, Length, Orthogonality

Definition: Let u and v be vectors in Rn,
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then the inner product, also referred to as a dot product, of u and v is
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Theorem: Let u, v and w be vectors in Rn, and let c be a scalar. Then

a. u ·v = v ·u

b. (u+v) ·w = u ·w+v ·w

c. (cu) ·v = c(u ·v) = u · (cv)

d. u ·u � 0, and u ·u = 0 if and only if u = 0

Definition: The length (or norm) of a v is the nonnegative scaler ||v|| defined by

||v||=
p

v ·v =
q
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n, and ||v||2= v ·v

For any scalar c,
||cv||= |c|||v||
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Definition: For u and v in Rn, the distance between u and v, written as dist(u,v), is
the length of the vector u�v,

dist(u,v) = ||u�v||
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Example 2: Find the distance between x =
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Orthogonal vectors: Two vectors u and v in Rn are orthogonal to each other if u ·v =
0. Zero vector is orthogonal to every vector in Rn.

The PythagoreanTheorem: Two vectors u and v in Rn are orthogonal to each other
if and only if ||u+v||2= ||u||2+||v||2.

Example 3: Determine which pairs of vectors are orthogonal
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Definition: If a vector z is orthogonal to every vector in a subspace W of Rn, then z is
said to be orthogonal to W . The set of all vectors that are orthogonal to W is called the
orthogonal component of W and is denoted by W?.

1. A vector x is in W? if and only if x is orthogonal to every vector in a set that
spans W .

2. W? is a subspace of Rn.

Theorem: Let A be an m⇥n matrix. The orthogonal complement of the row space of
A is the null space of A, and the orthogonal complement of the column space of A is
the null space of AT :

(RowA)? = NulA and (ColA)? = NulAT
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Row (A) = span of all rows of A .

① If
✗ G null UH , AX = 0

⇒ ✗ o v = 0, for any V c- Row (A)
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