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Section 6.1 Inner Product, Length, Orthogonality

Definition: Let u and v be vectors in R”,
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then the inner product, also referred to as a dot product, of u and v is
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Theorem: lLetu, v and w be vectors in R”, and let ¢ be a scalar. Then

a u-v=v-u ( A8 % BA)

b. (u+v) - w=u-w+v-w !
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Definition: The length (or norm) of a v is the nonnegative scaler ||v|| defined by

M= Vv v =\ 3+ 2, and [v|P=v-y

For any scalar c,
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Example 1: Find a unit vector in the direction of | 4
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Deﬁnltlon For u and v in R", the distance between u and v, written as dist(u, v), is
the length of the Vector u-—v, = )| - (v-wil
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Example 2: Find the distance between x = [i] andy = [:g]
odisd (YQ)= 1 X 3\
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Orthogonal vectors: Two vectors u and v in R” are orthogonal to each other if u-v =

0.[Zero vector is orthogonal to every vector in R”.

The PythagoreanTheorem: Two vectors u and v in R” are orthogonal to each other
if and only if |[u+v||*= [|u||*+||v||%.
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Example 3: Determine which pairs of vectors are orthogonal o wll odber
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Definition: If a vector z is orthiogonal to g¥ery vector in a subspace W of R”, then z is
said to be orthogonal to W/]F he set of all vectors that are orthogonal to W is called the

orthogonal component ﬂf W and is denoted by W. ( \1"%»\'« ()
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1. A vector x is in W if and only if x is orthogonal to every vector in a set that
spans W.

2. W+ is a subspace of R”.

Theorem: Let A be an m x n matrix. The orthogonal complement of the row space of
A is the null space of A| [and the orthogonal complement of the column space of A is
the null space of A”:

vgg’owA)i — NulA and (ColA)* = NulA?
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