Section 6.2 Orthogonal Sets

<u>Definition</u>: A set of vectors $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ in \mathbb{R}^n is an orthogonal set if each pair of distinct vectors from the set is orthogonal, that is, if $\mathbf{u}_i \cdot \mathbf{u}_j = 0$ whenever $i \neq j$. Example 1: Determine whether the following set of vectors are orthogonal

check of unu, using uning one call = 0	$\begin{bmatrix} -1 \\ 4 \\ -3 \end{bmatrix}, \begin{bmatrix} 5 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ -4 \\ -7 \end{bmatrix}$	orthogonality 2 liner indep
$u_1 \cdot u_2 = u_1^{\dagger} u_2 = u_1^{\dagger} u_1$	= (-1)5 + 42 + (3)1	= 0 l'neur inclap
$U_{2}, U_{5} = 53 + 2 - 4 + 1$	·-7 = 0	t outhogal) > outhog unel
$u_1 u_3 = (-1) + (-4)$	-(ふ(す) キロ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

<u>Theorem</u>: If $S = {\mathbf{u}_1, \dots, \mathbf{u}_p}$ is an orthogonal set of nonzero vectors in \mathbb{R}^n , then S is linearly independent and hence is a basis for the subspace spanned by S. //**Definition:** An orthogonal basis for a subspace W of \mathbb{R}^n is a basis for W that is also an orthogonal set. () if a busis is also orthogal

<u>Theorem</u>: Let $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ be an orthogonal basis for a subspace W of \mathbb{R}^n . For each y in W, the weights in the linear combination

$$\mathbf{y} = c_1 \mathbf{u}_1 + \dots + c_p \mathbf{u}_p = \begin{bmatrix} \mathbf{u}_1 \dots \mathbf{u}_p \end{bmatrix}$$

$$= \frac{\mathbf{y} \cdot \mathbf{u}_j}{\mathbf{u}_j \cdot \mathbf{u}_j} \quad (j = 1, \dots, p)$$

are given by

$$c_j = \frac{\mathbf{y} \cdot \mathbf{u}_j}{\mathbf{u}_j \cdot \mathbf{u}_j} \ (j = 1, \cdots, p)$$

An Orthogonal Projection: Given a nonzero vector \mathbf{u} in \mathbb{R}^n . Decompose a vector \mathbf{y} in \mathbb{R}^n into the sum of two vectors

$$\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z} \tag{1}$$

where $\hat{\mathbf{y}} = \alpha \mathbf{u}$ for some scalar α and \mathbf{z} is some vector orthogonal to \mathbf{u} .

Thus (1) is satisfied with
$$\hat{z}$$
 orthogonal to u if and only iff The vector \hat{y} is the orthogonal projection of y onto u , and the vector z is the component of y orthogonal to u .
The projection is determined by the subspace L spanned by u (the line through u and 0). Sometimes \hat{y} is denoted by proj $_{L}y$ and is called the orthogonal projection of y onto L . That is,
 $\hat{y} = \text{proj}_{L}' y = \frac{y \cdot u}{u \cdot u}$ by vector \tilde{u} . (2)
Example 2: Compute the orthogonal projection of $\begin{bmatrix} 7\\6\\7\end{bmatrix}$ onto the line through $\begin{bmatrix} 4\\2\\2\end{bmatrix}$ and the origin u .
Then write y as the sum of a vector in Span $\{u\}$ and a vector orthogonal to $\{u\}$.
 $y_{int} = \frac{y \cdot u}{u + 2z}$ $(\frac{u}{z})$
 $proj_{L}' = \frac{y \cdot u}{u + 2z}$ $(\frac{u}{z})$

<u>**Orthonormal Sets:**</u> A set $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ in \mathbb{R}^n is an orthonormal set if it is an orthogonal set of unit vectors. If *W* is the subspace spanned by such a set, then $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ in

 \mathbb{R}^n is an orthonormal basis for *W*, since the set is automatically linearly independent.

Example 3: Determine whether the following set of vectors are orthonormal. If a set is only orthogonal, normalize the vectors to produce an orthonormal set.

$$\begin{bmatrix} 1/3\\ 1/3\\ 1/3 \\ 1/3 \end{bmatrix}, \begin{bmatrix} -1/2\\ 0\\ 1/2 \end{bmatrix}$$
orthogonal
$$= \begin{bmatrix} u_{1} & u_{2} \\ 1/u_{1} & u_{2} \end{bmatrix}$$
orthogonal
$$= \begin{bmatrix} u_{1} & u_{2} \\ 1/u_{1} & u_{2} \end{bmatrix}$$
orthogonal
$$= \begin{bmatrix} u_{1} & u_{2} \\ 1/u_{1} & u_{2} \end{bmatrix}$$
orthogonal
$$= \begin{bmatrix} u_{1} & u_{2} \\ 1/u_{1} & u_{2} \end{bmatrix}$$

$$= \begin{bmatrix} u_{1} & u_{2} \\ 1/u_{1} & u_{2} \end{bmatrix}$$

$$= \begin{bmatrix} u_{1} & u_{2} \\ 1/u_{1} & u_{2} \end{bmatrix}$$

$$= \begin{bmatrix} u_{1} & u_{2} \\ 1/u_{1} & u_{2} \end{bmatrix}$$

$$= \begin{bmatrix} u_{1} & u_{2} \\ 1/u_{1} & u_{2} \end{bmatrix}$$

$$= \begin{bmatrix} u_{1} & u_{2} \\ 1/u_{1} & u_{2} \end{bmatrix}$$

$$= \begin{bmatrix} u_{1} & u_{2} \\ 1/u_{1} & u_{2} \end{bmatrix}$$

$$= \begin{bmatrix} u_{1} & u_{1} & u_{2} \\ 1/u_{2} \end{bmatrix}$$

$$= \begin{bmatrix} u_{1} & u_{1} & u_{2} \\ 1/u_{2} \end{bmatrix}$$

$$= \begin{bmatrix} u_{1} & u_{1} & u_{2} \\ 1/u_{2} \end{bmatrix}$$

$$= \begin{bmatrix} u_{1} & u_{1} & u_{2} \\ 1/u_{2} \end{bmatrix}$$

$$= \begin{bmatrix} u_{1} & u_{1} & u_{2} \\ 1/u_{2} \end{bmatrix}$$

$$= \begin{bmatrix} u_{1} & u_{2} & u_{2} \\ 1/u_{2} \end{bmatrix}$$

$$= \begin{bmatrix} u_{1} & u_{2} & u_{2} \\ 1/u_{2} \end{bmatrix}$$

$$= \begin{bmatrix} u_{1} & u_{2} & u_{2} \\ 1/u_{2} \end{bmatrix}$$

$$= \begin{bmatrix} u_{1} & u_{2} & u_{2} \\ 1/u_{2} \end{bmatrix}$$

$$= \begin{bmatrix} u_{1} & u_{2} & u_{2} \\ 1/u_{2} \end{bmatrix}$$

$$= \begin{bmatrix} u_{1} & u_{2} & u_{2} \\ 1/u_{2} \end{bmatrix}$$

$$= \begin{bmatrix} u_{1} & u_{2} & u_{2} \\ 1/u_{2} \end{bmatrix}$$

$$= \begin{bmatrix} u_{1} & u_{2} & u_{2} \\ 1/u_{2} \end{bmatrix}$$

$$= \begin{bmatrix} u_{1} & u_{2} & u_{2} \\ 1/u_{2} \end{bmatrix}$$

$$= \begin{bmatrix} u_{1} & u_{2} & u_{2} \\ 1/u_{2} \end{bmatrix}$$

$$= \begin{bmatrix} u_{1} & u_{2} & u_{2} \\ 1/u_{2} \end{bmatrix}$$

$$= \begin{bmatrix} u_{1} & u_{2} & u_{2} \\ 1/u_{2} \end{bmatrix}$$

$$= \begin{bmatrix} u_{1} & u_{2} & u_{2} \\ 1/u_{2} \end{bmatrix}$$

$$= \begin{bmatrix} u_{1} & u_{2} & u_{2} \\ 1/u_{2} \end{bmatrix}$$

$$= \begin{bmatrix} u_{1} & u_{2} & u_{2} \\ 1/u_{2} \end{bmatrix}$$

$$= \begin{bmatrix} u_{1} & u_{2} & u_{2} \\ 1/u_{2} \end{bmatrix}$$

$$= \begin{bmatrix} u_{1} & u_{2} & u_{2} \\ 1/u_{2} \end{bmatrix}$$

$$= \begin{bmatrix} u_{1} & u_{2} & u_{2} \\ 1/u_{2} \end{bmatrix}$$

$$= \begin{bmatrix} u_{1} & u_{2} & u_{2} \\ 1/u_{2} \end{bmatrix}$$

$$= \begin{bmatrix} u_{1} & u_{2} & u_{2} \\ 1/u_{2} \end{bmatrix}$$

$$= \begin{bmatrix} u_{1} & u_{2} & u_{2} \\ 1/u_{2} \end{bmatrix}$$

$$= \begin{bmatrix} u_{1} & u_{2} & u_{2} & u_{2} \\ 1/u_{2} \end{bmatrix}$$

$$= \begin{bmatrix} u_{1} & u_{2} & u_{2} & u_{2} \\ 1/u_{2} & u_{2} & u_{2} \\ 1/u_{2} \end{bmatrix}$$

$$= \begin{bmatrix} u_{1} & u_{2} & u_{2} & u_{2} \\ 1/u_{2} & u_{2} & u_{2} & u_{2} \\ 1/u_{2} & u_{2} & u_{2} & u_{2} & u_{2} & u_{2} & u_{2} \\ 1/u_{2} & u_{2} &$$

b
$$(U\mathbf{x}) \cdot (U\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$$

c $(U\mathbf{x}) \cdot (U\mathbf{y}) = 0$ if and only if $\mathbf{x} \cdot \mathbf{y} = \mathbf{0}$. The orthogonality