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Section 6.2 Orthogonal Sets

Definition: A set of vectors {uy,---,u,} in R” is an orthogonal set if each pair of
distinct vectors from the set is orthogonal, that is, if u; -u; = 0 whenever i # j.
Example 1: Determine whether the following set of vectors are orthogonal
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Theorem: If S = {uy,---,u,} is an orthogonal set of non ctors in R", then

S is linearly independent Z‘Itd hence is a basis for the subspace spanned by S. /!
Definition: An orthogonal basis for a subspace W of R" is a basis for W that is also an

orthogonal set.
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Theorem: Let {uy,---,u,} be an orthogonal basis for a subspace W of R". For each
y in W, the weights in the linear combination
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An Orthogonal Projection: Given a[nonzero|vector u in R". Decompose a vector y
in R" into the sum of two vectors o |

y=y+z (1)

where ¥ = oru for some scalar & and z is some vector orthoional to u.
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Thus (1) is satisfied with Z orthogonal to u if and only ifff The vector § is the orthogonal

projection of y onto u, and the vector z is the component of y orthogonal to u.
The projection is determined by the subspace L spanned by u (the line through u and
0). Sometimes ¥ is denoted by proj; y and is called the orthogonal projection of y onto
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Example 2: Compute the orthogonal projection of 6 onto the line through ) and
2
the orjgin. > W e
Then write y as the sum of ayector in Span {u} and a'vector orthogonal to {u}.
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Orthonormal Sets: A set {uj,---,u,} in R” is an orthonormal set if it is an orthogo-
nal set of unit vectors. If W is the subspace spanned by such a set, then {uy,---,u,} in
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R" is an orthonormal basis for W, since the set is automatically linearly independent.

Example 3: Determine whether the following set of vectors are orthonormal. If a set
1s only orthogonal, normalize the vectors to produce an orthonormal set.
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Theorem: Let U be an m X n matrix with orthonormal columns, and let x and y be in

R". Then \\w‘w V\“? X > Uf ?‘e“c'\ma {r‘g bua'“l\ * .“*e ve cloy
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