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Section 6.3 Orthogonal Projections

Theorem:

Example 1: Let
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Observe that {u1,u2} is an orthogonal basis for W = Span{u1,u2}. Write y as the sum

of a vector in W and a vector orthogonal to W .
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A Geometric Interpretation of the Orthogonal Projection:

Theorem:

The vector ŷ is called the best approximation to y by elements of W .

Example 2: Find the closest point to y in the subspace W spanned by u1 and u2 in

Example 1. Determine the distance from y to. the subspace W
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To find Y^
.

y^ = (%) is the closed point to y
in W
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Example 3: Find the best approximation to z by vectors of the form c1v1 + c2v2.
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Definition: An orthogonal basis for a subspace W of Rn
is a basis for W that is also an

orthogonal set.

Theorem: If {u1, · · · ,up} is an orthonormal basis for a subspace W of Rn
, then

projW y = (y ·u1)u1 +(y ·u2)u2 + · · ·+(y ·up)up

If U = [u1 u2 · · · up], then

projW y =UUT
y for all y in Rn

Example 4: Let y =
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, and W = Span{u1}.

(1) . Let U be the 2⇥1 matrix whose only column is u1. Compute UTU and UUT
.

(2) . Compute projW y and (UUT )y.
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Best approximation theorem, we just need to find y^
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