$$
y=\hat{y}+z
$$

Section 6.3 Orthogonal Projections
Theorem:
$\hat{y}=\frac{y, u}{u \cdot u} \vec{u}$ orthogonal projection
The Orthogonal Decomposition Theorem
Let W be a subspace of \mathbb{R}^{n}. Then each \mathbf{y} in \mathbb{R}^{n} can be written uniquely in the form

$$
\begin{align*}
& z \cdot u=0 \\
& \text { fou all } u \in \omega=\hat{y}+z \tag{1}
\end{align*}
$$

where $\hat{\mathbf{y}}$ is in W and \mathbf{z} is in W^{\perp}. In fact, if $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ is any orthogonal basis of W, then

$$
\begin{equation*}
\hat{\mathbf{y}}=\frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}+\cdots+\frac{\mathbf{y} \cdot \mathbf{u}_{p}}{\mathbf{u}_{p} \cdot \mathbf{u}_{p}} \mathbf{u}_{p} \tag{2}
\end{equation*}
$$

and $z=y-\hat{\mathbf{y}}$. $\quad \zeta$ orthogonal project of y onto $\omega \quad$ Prof $j_{w} y=\hat{y}$
Example 1: Let

$$
\mathbf{u}_{1}=\left[\begin{array}{c}
2 \\
5 \\
-1
\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right], \mathbf{y}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \quad \begin{gathered}
\text { Remark: } f \hat{y} \in W \\
\hat{y}=y, z=0
\end{gathered}
$$

Observe that $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ is an orthogonal basis for $W=\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$. Write \mathbf{y} as the sum of a vector in W and a vector orthogonal to W.

$$
\begin{aligned}
\hat{y} & =\frac{y \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}+\frac{y \cdot u_{1}}{u_{2} \cdot u_{2}} u_{2} \\
& =\frac{2+10-3}{4+25+1}\left(\begin{array}{c}
2 \\
5 \\
-1
\end{array}\right)+\frac{-2+2+3}{4+1+1}\left(\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right) \\
& =\frac{3}{10}\left(\begin{array}{c}
2 \\
5 \\
-1
\end{array}\right)+\frac{1}{2}\left(\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right) \\
& =\left(\begin{array}{c}
-2 / 5 \\
2 \\
1 / 5
\end{array}\right) \\
z & =y-\hat{y}=\left(\begin{array}{c}
7 / 5 \\
0 \\
14 / 5
\end{array}\right)
\end{aligned}
$$

A Geometric Interpretation of the Orthogonal Projection:

Theorem:

The Best Approximation Theorem

Let W be a subspace of \mathbb{R}^{n}, let \mathbf{y} be any vector in \mathbb{R}^{n}, and let $\hat{\mathbf{y}}$ be the orthogonal projection of \mathbf{y} onto W.||cen $\hat{\mathbf{y}}$ is the closest point in W to \mathbf{y}, in the sense that

$$
\begin{equation*}
\|\mathbf{y}-\hat{\mathbf{y}}\|<\|\mathbf{y}-\mathbf{v}\| \tag{3}
\end{equation*}
$$

for all \mathbf{v} in W distinct from $\hat{\mathbf{y}}$.
The vector $\hat{\mathbf{y}}$ is called the best approximation to \mathbf{y} by elements of W.
Example 2: Find the closest point to \mathbf{y} in the subspace W spanned by \mathbf{u}_{1} and $\mathbf{u}_{2} \|_{\text {in }}$ Example 1. Determine the distance from \mathbf{y} fo. the subspace W

To find \hat{y}

$$
\begin{aligned}
& \hat{y}=\left(\begin{array}{c}
-2 / 5 \\
2 \\
1 / 5
\end{array}\right) \text { is the closed point to } y \text { in } W \text {. } \\
& \text { distance }\|y-\hat{y}\|=\|z\|=\left\|\left(\begin{array}{c}
7 / 5 \\
0 \\
14 / 5
\end{array}\right)\right\|=\frac{1}{5} \sqrt{41+14^{2}}
\end{aligned}
$$

$$
\mathbf{z}=\left[\begin{array}{c}
2 \\
4 \\
0 \\
-1
\end{array}\right], \mathbf{v}_{1}=\left[\begin{array}{c}
2 \\
0 \\
-1 \\
-3
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}
5 \\
-2 \\
4 \\
2
\end{array}\right]
$$

$\rightarrow \operatorname{span}\left\{v_{1} v_{2}\right\}:=W$

A always check: $v_{1} \& V_{2}$ ave orthogonal to each other.
by the "Pest approximation theorem", he just head to find \hat{y}

$$
\hat{y}=\frac{v_{1} \cdot z}{v_{1} \cdot v_{1}} v_{1}+\frac{v_{2} \cdot z}{v_{2} \cdot v_{2}} v_{2}=\frac{4+v+0+3}{4+1+9}\left(\begin{array}{c}
2 \\
0 \\
-1 \\
-3
\end{array}\right)+\frac{10-8+0-2}{25+4+16+4}\left(\begin{array}{c}
5 \\
-2 \\
4 \\
2
\end{array}\right)
$$

Definition: An orthogonal basis for a subspace W of \mathbb{R}^{n} is a basis for W that is also an orthogonal set.

Theorem: If $\left\{\mathbf{u}_{1}, \cdots, \mathbf{u}_{p}\right\}$ is an orthonormal basis for a subspace W of \mathbb{R}^{n}, then

$$
\hat{y}=\operatorname{proj}_{W} \mathbf{y}=\left(\mathbf{y} \cdot \mathbf{u}_{1}\right) \mathbf{u}_{1}+\left(\mathbf{y} \cdot \mathbf{u}_{2}\right) \mathbf{u}_{2}+\cdots+\left(\mathbf{y} \cdot \mathbf{u}_{p}\right) \mathbf{u}_{p}
$$

If $U=\left[\mathbf{u}_{1} \mathbf{u}_{2} \cdots \mathbf{u}_{p}\right]$, then
$\operatorname{proj}_{W} \mathbf{y}=U U^{T} \mathbf{y}$ for all \mathbf{y} in \mathbb{R}^{n}
, $\mathbf{u}_{1}=\left[\begin{array}{c}1 / \sqrt{10} \\ -3 / \sqrt{10}\end{array}\right]$, and $W=\operatorname{Span}\left\{\mathbf{u}_{1}\right\}$.
$\|u\|=\sqrt{\frac{1}{10}+\frac{9}{10}}=1$
(1). Let U be the 2×1 matrix whose only column is \mathbf{u}_{1}. Compute $U^{T} U$ and $U U^{T}$.
(2) . Compute $\operatorname{proj}_{W} \mathbf{y}$ and $\left(U U^{T}\right) \mathbf{y}$.

$$
\begin{aligned}
& \text { c) }\left(U^{+}\right)_{1.2} U_{2.1}=I=1 . U U^{+} \text {is always a symmetric matrix. } \\
& \left(A=A^{+}\right) \\
& U_{2.1} U_{1.2}^{+}=\left(\begin{array}{cc}
\frac{1}{10} & \frac{-3}{10} \\
\frac{-3}{15} & \frac{9}{10}
\end{array}\right) \\
& \text { (2) } P_{\text {rojas }}^{y}=U U^{+} \vec{y}=\left(\begin{array}{c}
\frac{1}{10} \frac{-3}{10} \\
\frac{-3}{10} \\
\frac{9}{10}
\end{array}\right) \cdot\binom{7}{9}=\binom{\frac{-7}{5}}{6}
\end{aligned}
$$

