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Section 6.4 The Gram-Schmidt Process

The Gram–Schmidt process is a simple algorithm for producing an orthogonal or or-
thonormal basis for any nonzero subspace of Rn.
Theorem:

Orthonormal bases: An orthonormal basis is constructed easily from an orthogonal
basis {v1, · · · ,vp}: simply normalize (i.e., “scale”) all the vk.

Example 1: Given a basis for a subspace W :
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Construct an orthogonal basis for W .
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Example 2: Let
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Then {x1,x2,x3} is clearly linearly independent and thus is a basis for a subspace W of
R4. Construct an orthogonal basis for W .
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The QR Factorization: If A is an m⇥ n matrix with linearly independent columns,
then A can be factored as A = QR, where Q is an m⇥n matrix whose columns form an
orthonormal basis for Col A and R is an n⇥ n upper triangular invertible matrix with
positive entries on its diagonal.

Example 3: Find the QR Factorization of the matrix
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The QR Factorization: If A is an m⇥ n matrix with linearly independent columns,
then A can be factored as A = QR, where Q is an m⇥n matrix whose columns form an
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