Section 6.5 Least-square Problems

<u>Definition</u>: If *A* is $m \times n$ and **b** is in \mathbb{R}^m , a least-squres solution of $A\mathbf{x} = \mathbf{b}$ is an $\hat{\mathbf{x}}$ in \mathbb{R}^n such that

$$||\mathbf{b} - A\hat{\mathbf{x}}|| \le ||\mathbf{b} - A\mathbf{x}||$$

for all **x** in \mathbb{R}^n .

Remark:

So st approx theorem tells us that.

$$11 \text{ y} - \text{ y} 11 \leq 11 \text{ y} - \text{ v} 11 \text{ the all } \text{ v} \text{ w} \text{ (is a)}$$

 $11 \text{ y} - \text{ y} 11 \leq 11 \text{ y} - \text{ v} 11 \text{ the all } \text{ v} \text{ e} \text{ w} \text{ (is a)}$
 $11 \text{ y} - \text{ y} 11 \leq 11 \text{ y} - \text{ v} 11 \text{ the all } \text{ v} \text{ e} \text{ w} \text{ (is a)}$
 $12 \text{ y} - \text{ y} 11 \leq 11 \text{ y} - \text{ v} 11 \text{ the all } \text{ v} \text{ e} \text{ w} \text{ (is a)}$
 $13 \text{ y} - \text{ y} 11 \leq 11 \text{ y} - \text{ v} 11 \text{ the all } \text{ v} \text{ e} \text{ w} \text{ (is a)}$
 $13 \text{ y} - \text{ y} 11 \leq 11 \text{ y} - \text{ w} 11 \text{ the all } \text{ w} \text{ all } \text{ w} \text{ subspace } \text{ y} 11 \text{ subspace } \text{ y} 11 \text{ subspace } \text{ w} 11 \text{ subspace } \text{ subspace } \text{ w} 11 \text{ subspace } \text{ subspace } \text{ w} 11 \text{ subspace } \text{ subspace } \text{ w} 11 \text{ subspace } \text{ subspace } \text{ w} 11 \text{ subspace } \text{ subs$

FIGURE 1 The vector **b** is closer to $A\hat{\mathbf{x}}$ than to $A\mathbf{x}$ for other \mathbf{x} .

Solution of the General Least-Squares Problem:

Given A and **b** as above, apply the Best Approximation Theorem in Section 6.3 to the subspace Col A. Let

$$\hat{\mathbf{b}} = \operatorname{proj}_{\operatorname{Col}A}\mathbf{b}$$

Since $\hat{\mathbf{b}}$ is in the column space of *A*, then there is an $\hat{\mathbf{x}}$ in \mathbb{R}^n such that

$$A\hat{\mathbf{x}} = \hat{\mathbf{b}} \tag{1}$$

Such an $\hat{\mathbf{x}}$ is a least square solution of $A\mathbf{x} = \mathbf{b}$ if and only if $\hat{\mathbf{x}}$ satisfies (1).

why is that ? 6 b projb (colla) by the best approx theorem) (alla) $A\widehat{x} = \widehat{b} = Proj \widehat{b}$ col(A) can we find 2 7 \bigcirc Yes, & t col (A) > there exist X1-- Xu FIR $\vec{c}_1 \cdot \vec{x}_1 + \vec{c}_1 \cdot \vec{x}_2 + \cdots \quad \vec{c}_n \cdot \vec{x}_n = \vec{b}$ Such that $\hat{\chi} = \begin{pmatrix} \hat{\chi}_1 \\ \hat{\chi}_2 \\ \hat{\chi}_1 \\ \hat{\chi}_2 \end{pmatrix}$

Theorem: The set of least-squares solutions of $A\mathbf{x} = \mathbf{b}$ coincides with the nonempty set of solutions of the normal equations $A^T A \mathbf{x} = A^T \mathbf{b}$.

L) normal equation for Ax = b.

Theorem: Let *A* be an $m \times n$ matrix. The following statements are logically equivalent:

- a. The equation $A\mathbf{x} = \mathbf{b}$ has a unique least-squares solution for each \mathbf{b} in \mathbb{R}^m .
- b. The columns of A are linearly indpendent.
- c. The matrix $A^T A$ is invertible.

When these statements are true, the least-squares solution $\hat{\mathbf{x}}$ is given by

$$\hat{\mathbf{x}} = (A^T A)^{-1} A^T \mathbf{b}$$

Example 1: Find a least-squares solution of $A\mathbf{x} = \mathbf{b}$ by (a) constructing the normal equations for $\hat{\mathbf{x}}$ and (b) solving for $\hat{\mathbf{x}}$.

$$A = \begin{bmatrix} 2 & 1 \\ -2 & 0 \\ 2 & 3 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} -5 \\ 8 \\ 1 \end{bmatrix}$$
Normal equation: $A^{\dagger} A \cdot \mathbf{x} = A^{\dagger} \mathbf{b}$

$$A^{\dagger} A = \begin{pmatrix} 2 & -2 & 2 \\ 1 & 0 & 3 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ -1 & 0 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} 12 & 8 \\ 8 & 10 \end{pmatrix}$$

$$A^{\dagger} \mathbf{b} = \begin{pmatrix} 2 & -1 & 2 \\ 1 & 0 & 3 \end{pmatrix} \begin{bmatrix} -5 \\ 8 \\ 1 \end{bmatrix} = \begin{pmatrix} -24 \\ -2 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 8 \\ 1 & 0 \end{pmatrix} \chi = \begin{pmatrix} -24 \\ -2 \end{pmatrix}$$

Step 2 (b) $\hat{X} = (A^{+} A)^{-1} A^{+} b = \frac{1}{56} \begin{pmatrix} 10 & -8 \\ -8 & 12 \end{pmatrix} \cdot \begin{pmatrix} -24 \\ -2 \end{pmatrix}$ $= \begin{pmatrix} 4 \\ 3 \end{pmatrix},$ by the third, \hat{X} is the least square solution. **Example 2:** Describe all least-squares solutions of the equation $A\mathbf{x} = \mathbf{b}$.

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 1 \\ 3 \\ 8 \\ 2 \end{bmatrix}$$

Theorem: Given an $m \times n$ matrix A with linearly independent columns, let A = QR be a QR factorization of A. Then, for each **b** in \mathbb{R}^m , the equation $A\mathbf{x} = \mathbf{b}$ has a unique least-squares solution, given by

$$\hat{\mathbf{x}} = (\mathbf{R})^{-1} \mathbf{Q}^T \mathbf{b}$$

Example 3: Use the factorization A = QR to find the least-squares solution of $A\mathbf{x} = \mathbf{b}$.

$$A = \begin{bmatrix} 2 & 3 \\ 2 & 4 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2/3 & -1/3 \\ 2/3 & 2/3 \\ 1/3 & -2/3 \end{bmatrix} \begin{bmatrix} 3 & 5 \\ 0 & 1 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 7 \\ 3 \\ 1 \end{bmatrix}$$

the first coll of
$$A = 4e_2 u^{1} + 4e_3 u^{1}$$

 \Rightarrow the colls of A one not linear indep.
 $A^{1}A = \begin{pmatrix} 4 & 2 & 2 \\ 2 & 2 & 0 \\ 2 & 0 & 2 \end{pmatrix}$
 $A^{1}b = \begin{pmatrix} 14 \\ 4 \\ 10 \end{pmatrix}$
Find X such that
 $\begin{pmatrix} 4 & 1 & 2 \\ 2 & 2 & 0 \\ 10 \end{pmatrix} \cdot \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} 14 \\ 4 \\ 10 \end{pmatrix}$
 $A^{1}A$ is not involleble.

$$[A^{+}A^{+}b] = \begin{pmatrix} 1 & 0 & 1 & 5 \\ 0 & 1 & -1 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

X3 = 5 from the 2 how =) $x_{1} - 5 = -3$ ×1 = 5-3 $x_1 + s = 5$ from the 1st row =) x1 = -5+ 5 2) $\chi = \begin{pmatrix} -5 & 15 \\ 5 & -3 \\ 5 & + 0 \end{pmatrix} = \begin{pmatrix} -3 \\ 5 \\ 5 \end{pmatrix} + \begin{pmatrix} -3 \\ 6 \end{pmatrix}$ Finally $= 5 \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 5 \\ -3 \\ -3 \end{pmatrix}$ cill vectors of $s\begin{pmatrix} -1\\ 1 \end{pmatrix} + \begin{pmatrix} S\\ -s \\ 0 \end{pmatrix}$ are the least - spannes solution of Ax = 6. //

Eq. 3. Find a least - Symmes solutions of
$$Ax = b$$
 for

$$A = \begin{pmatrix} 1 & -b \\ 1 & -2 \\ 1 & 1 \end{pmatrix} \quad b = \begin{pmatrix} -1 \\ 2 \\ 1 \\ b \end{pmatrix}$$

$$\overrightarrow{B} \quad \overrightarrow{B}$$

$$\overline{L_{1}} \circ \overline{L_{1}} = D \quad (=) \quad \overline{L_{1}} \quad x \quad ov + b \cdot g \quad v + b \cdot g \quad u = 1 \quad (=) \quad \overline{L_{1}} \quad x \quad ov + b \cdot g \quad u = 1 \quad (=) \quad (=$$

Example 2: Describe all least-squares solutions of the equation $A\mathbf{x} = \mathbf{b}$.

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 1 \\ 3 \\ 8 \\ 2 \end{bmatrix}$$

Theorem: Given an $m \times n$ matrix A with linearly independent columns, let A = QR be a QR factorization of A. Then, for each **b** in \mathbb{R}^m , the equation $A\mathbf{x} = \mathbf{b}$ has a unique least-squares solution, given by

$$\hat{\mathbf{x}} = (R)^{-1}Q^T \mathbf{b}$$
 (=) $R^{1} = Q^{1} \mathbf{b}$

Example 3: Use the factorization A = QR to find the least-squares solution of $A\mathbf{x} = \mathbf{b}$.

$$A = \begin{bmatrix} 2 & 3 \\ 2 & 4 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2/3 & -1/3 \\ 2/3 & 2/3 \\ 1/3 & -2/3 \end{bmatrix} \begin{bmatrix} 3 & 5 \\ 0 & 1 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 7 \\ 3 \\ 1 \end{bmatrix}$$

$$= \begin{cases} x_{1} = -1 \\ x_{1} = 4 \end{cases} = \begin{cases} 4 \\ -1 \end{cases}$$