Section 6.5 Least-square Problems

Definition: If A is $m \times n$ and \mathbf{b} is in \mathbb{R}^{m}, a least-squres solution of $A \mathbf{x}=\mathbf{b}$ is ar $\hat{\mathbf{x}} \mathrm{n} \mathbb{R}^{n}$ such that

$$
\|\mathbf{b}-A \hat{\hat{\mathbf{x}}}\| \leq\|\mathbf{b}-A \underline{\mathbf{x}}\|
$$

for all \mathbf{x} in \mathbb{R}^{n}.
\rightarrow arbitrary in $\mathbb{R}^{\prime \prime}$
Remark:
yest approx theorem tells us that.

$$
\|y-\hat{y}\| \leq\|y-v\| \text { for all } v \in W(\text { is a }
$$

$$
\text { is } \operatorname{proj}_{w}^{\prime} y
$$

subspace of
$\left.\mathbb{R}^{n}\right)$

FIGURE 1 The vector \mathbf{b} is closer to $A \hat{\mathbf{x}}$ than to $A \mathbf{x}$ for other \mathbf{x}.

Solution of the General Least-Squares Problem:

Given A and \mathbf{b} as above, apply the Best Approximation Theorem in Section 6.3 to the subspace $\mathrm{Col} A$. Let

$$
\hat{\mathbf{b}}=\operatorname{proj}_{\operatorname{Col} A} \mathbf{b}
$$

Since $\hat{\mathbf{b}}$ is in the column space of A, then there is an $\hat{\mathbf{x}}$ in \mathbb{R}^{n} such that

$$
\begin{equation*}
A \hat{\mathbf{x}}=\hat{\mathbf{b}} \tag{1}
\end{equation*}
$$

Such an $\hat{\mathbf{x}}$ is a least square solution of $A \mathbf{x}=\mathbf{b}$ if and only if $\hat{\mathbf{x}}$ satisfies (1).
$A \hat{x}$ is uctual $\operatorname{Proj} b$
why is thut?

$$
A \hat{x}=\hat{b}=\operatorname{proj}_{\operatorname{col}(A)} b
$$

(1) can we find \hat{x} ?

$$
\text { Yes, } \hat{b} t \operatorname{co} \mid(A) \Rightarrow \text { there erist } \hat{x}_{1} \ldots \hat{x_{0}} \in \mathbb{R}
$$

such thut $\overrightarrow{a_{1}} \cdot \hat{x}_{1}+\vec{a}_{2} \cdot \hat{x}_{2}+\ldots \overrightarrow{a_{u}} \cdot \hat{y}_{4}=\hat{b}$

$$
\hat{x}=\left(\begin{array}{c}
\hat{x}_{1} \\
\vdots \\
\hat{x}_{n}
\end{array}\right)
$$

Theorem: The set of least-squares solutions of $A \mathbf{x}=\mathrm{b}$ coincides with the nonempty set of solutions of the normal equations $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$.
L) normal equation for $A x=b$

Theorem: Let A be an $m \times n$ matrix. The following statements are logically equivalent:
a. The equation $A \mathbf{x}=\mathbf{b}$ has a unique least-squares solution for each \mathbf{b} in \mathbb{R}^{m}.

4
b. The columns of A are linearly independent.
c. The matrix $A^{T} A$ is invertible.

When these statements are true, the least-squares solution $\hat{\mathbf{x}}$ is given by

$$
\hat{\mathbf{x}}=\left(A^{T} A\right)^{-1} A^{T} \mathbf{b}
$$

Example 1: Find a least-squares solution of $A \mathbf{x}=\mathbf{b}$ by (a) constructing the normal equations for $\hat{\mathbf{x}}$ and (b) solving for $\hat{\mathbf{x}}$.

$$
A=\left[\begin{array}{cc}
2 & 1 \\
-2 & 0 \\
2 & 3
\end{array}\right], \mathbf{b}=\left[\begin{array}{c}
-5 \\
8 \\
1
\end{array}\right]
$$

step 1 (4) Normal equation:

$$
A^{t} A \cdot x=A^{t} b
$$

$$
\begin{aligned}
& A^{+} A=\left(\begin{array}{ccc}
2 & -2 & 2 \\
1 & 0 & 3
\end{array}\right)\left(\begin{array}{cc}
2 & 1 \\
-2 & 0 \\
2 & 3
\end{array}\right)=\left(\begin{array}{cc}
12 & 8 \\
8 & 10
\end{array}\right) \\
& A^{+} b=\left(\begin{array}{ccc}
2 & -2 & 2 \\
1 & 0 & 3
\end{array}\right)\left(\begin{array}{c}
-5 \\
8 \\
1
\end{array}\right)=\binom{-24}{-2}
\end{aligned}
$$

$$
\left(\begin{array}{cc}
12 & 8 \\
8 & 10
\end{array}\right) x=\binom{-24}{-2}
$$

step 2 (6$)$

$$
\begin{aligned}
\hat{x}=\left(A^{+} \Delta\right)^{-1} A^{+} b & =\frac{1}{56}\left(\begin{array}{cc}
10 & -8 \\
-8 & 12
\end{array}\right) \cdot\binom{-24}{-2} \\
& =\binom{-4}{3}
\end{aligned}
$$

by the the, \hat{x} is the least square solution.

Example 2: Describe all least-squares solutions of the equation $A \mathbf{x}=\mathbf{b}$.

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
1 & 0 & 1
\end{array}\right], \mathbf{b}=\left[\begin{array}{l}
1 \\
3 \\
8 \\
2
\end{array}\right]
$$

Theorem: Given an $m \times n$ matrix A with linearly independent columns, let $A=Q R$ be a QR factorization of A. Then, for each \mathbf{b} in \mathbb{R}^{m}, the equation $A \mathbf{x}=\mathbf{b}$ has a unique least-squares solution, given by

$$
\hat{\mathbf{x}}=(R)^{-1} Q^{T} \mathbf{b}
$$

Example 3: Use the factorization $A=Q R$ to find the least-squares solution of $A \mathbf{x}=\mathbf{b}$.

$$
A=\left[\begin{array}{ll}
2 & 3 \\
2 & 4 \\
1 & 1
\end{array}\right]=\left[\begin{array}{cc}
2 / 3 & -1 / 3 \\
2 / 3 & 2 / 3 \\
1 / 3 & -2 / 3
\end{array}\right]\left[\begin{array}{ll}
3 & 5 \\
0 & 1
\end{array}\right], \mathbf{b}=\left[\begin{array}{l}
7 \\
3 \\
1
\end{array}\right]
$$

the first col of $A=$ the $2^{n d}+$ the $3^{n d}$
\Rightarrow the cols of A no not linear indep.

$$
\begin{aligned}
& A^{t} A=\left(\begin{array}{lll}
4 & 2 & 2 \\
2 & 2 & 0 \\
2 & 0 & 2
\end{array}\right) \\
& A^{t} b=\left(\begin{array}{c}
14 \\
4 \\
10
\end{array}\right)
\end{aligned}
$$

Find x such that

$$
\underbrace{\left(\begin{array}{lll}
4 & 2 & 2 \\
2 & 2 & 0 \\
2 & 0 & 2
\end{array}\right)}_{A^{+} A \text { is not inverluble. }} \cdot\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
14 \\
4 \\
10
\end{array}\right)
$$

Ref. $\left[\begin{array}{lll}A^{+} & A\end{array} A^{\prime} b\right]=\left(\begin{array}{ccc:c}1 & 0 & 1 & 5 \\ 0 & 1 & -1 & -3 \\ 0 & 0 & 0 & 0\end{array}\right)$
fur

$$
x_{3}=5
$$

from the $2^{\text {nd }}$ row $\Rightarrow \quad x_{2}-s=-3$

$$
x_{2}=s-3
$$

from the $1^{\text {st }}$ row $\Rightarrow \quad x_{1}+5=5$

Finally

$$
\begin{aligned}
x=\left(\begin{array}{c}
-s+5 \\
s-3 \\
s+0
\end{array}\right) & =\left(\begin{array}{c}
-s \\
s \\
s
\end{array}\right)+\left(\begin{array}{c}
s \\
-3 \\
0
\end{array}\right) \\
& =s\left(\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right)+\left(\begin{array}{c}
5 \\
-3 \\
0
\end{array}\right)
\end{aligned}
$$

all vectors of $s\left(\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right)+\left(\begin{array}{c}5 \\ -3 \\ 0\end{array}\right)$ ane the leust-squmes
solution of $A P=b$.

Ey 3. Find a leust-spurues solutions of $A x=b$ for

$$
A=\left(\begin{array}{cc}
1 & -6 \\
1 & -2 \\
1 & 1 \\
1 & 7
\end{array}\right) \quad \underbrace{}_{\overrightarrow{a_{1}}} \underbrace{}_{\sigma_{0}}=\left(\begin{array}{c}
-1 \\
2 \\
1 \\
6
\end{array}\right)
$$

$\overrightarrow{u_{1}} \cdot \overrightarrow{u_{2}}=0 \quad \Leftrightarrow \quad \overrightarrow{u_{1}}$ is outtogonal to $\overrightarrow{u_{2}}$
whut is $\quad A \hat{x} ? \quad \hat{x}=P_{\text {oj }}$ (.ll (A)
$\longrightarrow \vec{a}_{1} \& \overrightarrow{c_{2}}$ is inot on ortangonal busis of col (A)
$=\operatorname{spon}\langle\vec{a}, \vec{a}\}$
by thm in 6.3

$A \hat{x}=\hat{b}$, do we rally nal to sotve tov \hat{x} ?

NO O

$$
\hat{b}=2 \vec{a}_{1}+\frac{1}{2} \vec{c}_{6}=(\underbrace{\left(\vec{a}_{1}\right.}_{A} \overrightarrow{\vec{b}_{2}}) \cdot(\underbrace{\left(\frac{1}{2}\right)}_{\hat{X}}
$$

Example 2: Describe all least-squares solutions of the equation $A \mathbf{x}=\mathbf{b}$.

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
1 & 0 & 1
\end{array}\right], \mathbf{b}=\left[\begin{array}{l}
1 \\
3 \\
8 \\
2
\end{array}\right]
$$

Theorem: Given an $m \times n$ matrix A with linearly independent columns, let $A=Q R$ be a QR factorization of A. Then, for each \mathbf{b} in \mathbb{R}^{m}, the equation $A \mathbf{x}=\mathbf{b}$ has a unique least-squares solution, given by

$$
\hat{\mathbf{x}}=(R)^{-1} Q^{T} \mathbf{b} \Leftrightarrow \mathbb{R} \hat{x}=Q^{t} b
$$

Example 3: Use the factorization $A=Q R$ to find the least-squares solution of $A \mathbf{x}=\mathbf{b}$.

$$
\left.\begin{array}{c}
A=\left[\begin{array}{ll}
2 & 3 \\
2 & 4 \\
1 & 1
\end{array}\right]= \\
Q
\end{array} \begin{array}{cc}
{[2 / 3} & -1 / 3 \\
2 / 3 & 2 / 3 \\
1 / 3 & -2 / 3
\end{array}\right]\left[\begin{array}{ll}
3 & 5 \\
0 & 1
\end{array}\right], \mathbf{b}=\left[\begin{array}{l}
7 \\
3 \\
1
\end{array}\right]
$$

$$
\left.\begin{array}{l}
R=\left(\begin{array}{ll}
3 & 5 \\
0 & 1
\end{array}\right) \\
a^{+} b=\binom{7}{-1}
\end{array} \begin{array}{l}
\left(\begin{array}{ll}
3 & 5 \\
0 & 1
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{7}{-1} \\
x_{2}=-1 \\
3 x_{1}+5 x_{2}=7 \\
\Rightarrow \begin{array}{l}
x_{1}=\frac{1}{3}
\end{array}\left(7-5 x_{0}\right.
\end{array}\right)
$$

