Section 6.7 Inner Product Spaces

Definition: An inner product on a vector space V is a function that, to each pair of vectors \mathbf{u} and \mathbf{v} in V, associates a real number $\langle\mathbf{u}, \mathbf{v}\rangle$ and satisfies the following axioms, for all $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in V and all scalars c :

$$
\text { Dot product of } u \in \mathbb{R}^{n} \otimes v \in \mathbb{R}^{n}
$$

1. $\langle\mathbf{u}, \mathbf{v}\rangle=\langle\mathbf{v}, \mathbf{u}\rangle$
2. $\langle\mathbf{u}+\mathbf{v}, \mathbf{w}\rangle=\langle\mathbf{u}, \mathbf{w}\rangle+\langle\mathbf{v}, \mathbf{w}\rangle$

$$
\begin{aligned}
& \text { is un inures product of } \|^{n} \\
& \text { cove) }
\end{aligned}
$$

3. $\langle c \mathbf{u}, \mathbf{v}\rangle=c\langle\mathbf{u}, \mathbf{v}\rangle \quad c \in \mathbb{R}$
4. $\langle\mathbf{u}, \mathbf{u}\rangle \geq 0$ and $\langle\mathbf{u}, \mathbf{u}\rangle=0$ if and only if $\mathbf{u}=\mathbf{0}$.

A vector space with an inner product is called an inner product space.
Definition: The length or norm of a vector \mathbf{v} is
out product

$$
\|\mathbf{v}\|=\sqrt{\langle\mathbf{v}, \mathbf{v}\rangle}
$$

$$
\|\mathbf{v}\|=\sqrt{\langle\mathbf{v}, \mathbf{v}\rangle} \quad\|u\|=\sqrt{u \cdot u}
$$

A unit vector is one whose length is 1 .
The distance between \mathbf{u} and \mathbf{v} is $\|\mathbf{u}-\mathbf{v}\|$.
Vectors \mathbf{u} and \mathbf{v} are orthogonal if $\langle\mathbf{u}, \mathbf{v}\rangle=0$.
Example 1: Let set of real numbers \mathbb{R}^{2} have the inner product

$$
\begin{aligned}
& \langle\mathbf{u}, \mathbf{v}\rangle=4 u_{1} v_{1}+4 u_{2} v_{2} . \quad \text { dot product. } \\
& u_{0} v=v_{1} v_{1}+u_{3} v_{2}
\end{aligned}
$$

Let $\mathbf{x}=(3,2)$ and $\mathbf{y}=(4,-1)$. Compute $\langle\mathbf{x}, \mathbf{y}\rangle,\|\mathbf{x}\|$, and $\|\mathbf{y}\|$.

$$
\begin{aligned}
& \langle x, y\rangle=4 \cdot \frac{3 \cdot v_{1}}{u_{1}}+4 \cdot 2 \cdot\left(\frac{-1}{v_{1}}\right)=40 \\
& \|x\|=\sqrt{\langle x, x\rangle}=\sqrt{4 \cdot 3 \cdot 3+4 \cdot 2 \cdot 2}=\sqrt{52} \\
& \|y\|=\sqrt{\langle y \cdot y\rangle}=\sqrt{4 \cdot 4 \cdot 4+4 \cdot(-) \cdot(-1)}=\sqrt{68}
\end{aligned}
$$

Example 2: Let \mathbb{P}_{2} have the inner product

$$
\left\rangle\left\langle, t_{1} t^{2}\right\rangle\langle p, q\rangle=p\left(t_{0}\right) q\left(t_{0}\right)+p\left(t_{1}\right) q\left(t_{1}\right)+p\left(t_{2}\right) q\left(t_{2}\right)\right.
$$

for any p and $q \operatorname{in} \mathbb{P}_{2}$. And let $t_{0}=-1, t_{1}=0$, and $t_{2}=1$.
Compute the lengths of the vectors $p(t)=2 t^{2}+1$ and $q(t)=3 t+5$. Compute the inner product $\langle p, q\rangle$.

$$
\begin{aligned}
& \|p\|=\sqrt{\langle p, p\rangle}=\sqrt{p(-1) p(-1)+p(0) p(0)+p(1) p(1)} \\
& =\sqrt{(2+1)(2+1)+1.1+(2+1)(2+1)}=\sqrt{19} \\
& \|q\|=\sqrt{\langle q, q\rangle}=\sqrt{q(-1) q(-1)+q(0) q(0)+q(1) q(1)} \\
& =\sqrt{(-3+5)(3+5)+5 \cdot 5+(3+5)(3+5)}=\sqrt{4+25+64} \\
& (p \cdot q)=p(-1) q(-1)+p(0) q(0)+p(1) q(1) \\
& =(2+1)(-3+5)+1 \cdot 5+(2+1)(3+5) \\
& =6+5+24=35 .
\end{aligned}
$$

The Gram-Schmidt Process:
The existence of orthogonal bases for finite-dimensional subspaces of an inner product space can be established by the Gram-Schmidt process, just as in \mathbb{R}^{n}.

$$
<p \cdot q)=p(-s) q(-1)+p(-1) q(-1)+p(1) q(1)+p(-3) q(3)
$$

Example 3: Let \mathbb{P}_{3} have the inner product given by evaluation at $-3,-1,1$, and 3.
Let $p_{0}(t)=1, p_{1}(t)=t$, and $p_{2}(t)=t^{2}$.
(1). Compute the orthogonal projection of p_{2} onto the subspace spanned by p_{0} and p_{1}. heed to check $\left\langle P_{0}, P_{1}\right\rangle=0$ (P_{0} is orthogonal to P_{1})

$$
\begin{aligned}
\left\langle P_{0}, P_{1}\right\rangle & =P_{0}(-3) P_{1}(-3)+P_{0}(-1) \cdot P_{1}(-1)+P_{0}(1) P_{1}(1)+P_{0}(3) P_{1}(\xi) \\
& =1 \cdot-3+1 \cdot-1+1 \cdot 1+1 \cdot-3=0 \Leftrightarrow P_{0} 1 \cdot P_{1}
\end{aligned}
$$

the projection of P_{2} onto spur $\left\{P_{0}, P_{1}\right\}:=w$
(6.3)

$$
\hat{p}=\frac{\left\langle p_{2}, p_{0}\right\rangle}{\left\langle p_{0}, p_{0}\right\rangle} p_{0}+\frac{\left\langle p_{2}, p_{1}\right\rangle}{\left\langle p_{1}, p_{1}\right\rangle} p_{1}
$$

(2). Find a polynomial q that is orthogonal to p_{0} and p_{1}, such that $\left\{p_{0}, p_{1}, q\right\}$ is an orthogonal basis for Span $\left\{p_{0}, p_{1}, p_{2}\right\}$. Scale the polynomial q so that its vector of values at $(-3,-1,1,3)$ is $(1,-1,-1,1)$.

$$
\begin{aligned}
\left\langle P_{2}, P_{0}\right\rangle & =\frac{P_{2}\left(-B_{3}\right) P_{0}(-3)+P_{1}(-1) P_{0}(-1)+P_{2}(1) P_{0}(1)+P_{2}(3) P_{0}(3)}{P_{2}(t)}=1^{2}(t)=1 \\
& =9 \cdot 1+1.1+1.1+9.1=20 \\
\left\langle p_{0}, P_{0}\right\rangle & =P_{0}(-3) P_{0}(-3)+\ldots+P_{0}(3) P_{0}(3) \\
& =4 \\
\left\langle P_{2}, P_{1}\right\rangle & =P_{2}(-3) P_{1}(-3)+P_{2}(-1) P_{1}(-1)+P_{2}(1) P_{1}(+1)+P_{2}(3) P_{1}(3) \\
& =-9.3-1.1+1+1+9.3=0
\end{aligned}
$$

$\hat{p}=S \cdot P_{0}=S$ (orthogonal projection of \vec{p}_{2} onto $\left.\operatorname{spon}\left\{P_{0} P_{1}\right\}\right\}$.
(2)

$$
\underbrace{q \perp \operatorname{spu}\left\{p_{0} p_{1}\right)}_{\substack{C^{q}+\operatorname{thog} o n u l \\ \text { de composition. }}}
$$

$$
q=t^{2}-5
$$

we just need to scale q by $\frac{1}{4}$

$$
\hat{q}=\frac{1}{4}\left(t^{2}-3\right)
$$

Best Approximation in Inner Product Spaces:
 \hat{f} is just the orthogand projection of f onto ω.
One problem is to approximate a function f in V by a function g from a specified sub- formula space W of V. The "closeness" of the approximation of f depends on the way $\|f-g\|$ chock (6.3) is defined. We will consider only the case in which the distance between f and g is determined by an inner product. In this case, the best approximation to f by functions in W is the orthogonal projection of f onto the subspace W.

Example 4: Let \mathbb{P}_{3} have the inner product as in Example 3, with $p_{0}(t), p_{1}(t)$ and q the polynomials described there. Find the best approximation to $p(t)=t^{3}$ by polynomials in Span $\left\{p_{0}, p_{1}, q\right\}$.
\Leftrightarrow find a vector \hat{p} in spun $\{p \circ p, q\}$ such that

$$
\|\hat{p}-p\| \leq \| y \text {-p\| for ul } y \in \operatorname{spun}\} p \cdot p_{1} \delta \mid
$$

by the best approximation thm $(6,3)$

$$
\begin{aligned}
& \hat{p}=\text { orthogonal projection of } p(t)=t^{3} \text { onto span }\left(p_{0} p_{1} q\right) \\
& \hat{p}=\frac{\left\langle p, p_{0} \partial\right.}{\left\langle p_{0}, p_{0}\right\rangle} \frac{p_{0}}{1}+\frac{\left\langle p, p_{1}\right\rangle}{\left\langle p_{1}, p_{1}\right\rangle} \frac{p_{1}}{t}+\frac{\langle p, q\rangle}{(q, q\rangle} q=\frac{41}{5} t \\
& \text { The Cauchy-Schwarz Inequality: For all u and v in } V, \quad \hat{q}=\frac{1}{4}\left(t^{2}, j\right)
\end{aligned}
$$

The Triangle Inequality: For all \mathbf{u} and \mathbf{v} in V,

$$
\|\mathbf{u}+\mathbf{v}\| \leq\|\mathbf{u}\|+\|\mathbf{v}\|
$$

