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Section 6.7 Inner Product Spaces

Definition: An inner product on a vector space V is a function that, to each pair of
vectors u and v in V , associates a real number (u, v) and satisfies the following axioms,

for all w,v,w in V and all scalars c: Dot P“""d a{ w € M "‘lp"
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2. (u+v,w) = (u,w)+(v,w)
3. {cu,v) =c(u,v) ¢ ¢lR
4. (u,u) >0 and (u,u) =0 if and only if u = 0.

A vector space with an inner product is called an inner product space.
Definition: The length or norm of a vector v is Jot b e
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A unit vector is one whose length is 1.
The distance between u and v is ||ju — v||.

Vectors u and v are orthogonal if (u,v) = 0.

Example 1: Let set of real numbers R? have the inner product
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Letx=(3,2) andy = (4,—1). Compute (x,y), ||x||, and ||y||-
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Example 2: Let P, have the inner product

.
Syt
it (p.q) = p(to)qi0) + p(t1)q(tr) + p(12)q(12)
for any p and g inP;. And letfg = —1,¢; =0, and 1, = 1.
Compute the lengths of the vectors p(¢) = 2t> 4 1 and g(¢) = 3t + 5. Compute the inner
product (p,q).
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The Gram—-Schmidt Process:
The existence of orthogonal bases for finite-dimensional subspaces of an inner product
space can be established by the Gram—Schmidt process, just as in R".
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Example 3: Let P3 have the inner produclt en by eva atlon at —1, 1, and

Let po(t) = 1, pi(t) =t , and pa(t) =1,
(1). Compute the orthogonal projection of p; onto the subspace spanned by pg and p;.
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(2). Find a polynomial ¢ that is orthogonal to py and pi, such that {pg, p1,q} is an
orthogonal basis for Span {pg, p1,p2} . Scale the polynomial ¢ so that its vector of
values at (—3,—1,1,3)is (1,—1,—1,1).

D ¢y, o> = BRI AR RE)+ B Pol) 1 PG) P3)
?VH):{; “0(““1
- g4 4§ = 20
Poy Pod = Pol-3) Vo) + .+ Polk) hoR)
= 4
Gy, 07 = D) PE)+ P RO+ PO B(H) 1) BY
P N L P I B e v



= 9' P(? = S (()V-W\ogoud Yv.le,u{»\\m % l)z
oo Cpe Spd P'}),

3¢
e e v et (R0 Y (%‘&f (

\/\"Q

7 Q)

|
[wtd med b Sale L«d T

%)
A
_4
Li.



Math 26500 - zecheng zhang, Spring 2022

Best Approximation in Inner Product Spaces:

One problem is to approximate a function f in V by a function g from a specified sub- QWV“"‘
space W of V. The “closeness” of the approximation of f depends on the way ||f — g|| (v k (& 3\
is defined. We will consider only the case in which the distance between f and g is

determined by an inner product. In this case, the best approximation to f by functions

in W is the orthogonal projection of f onto the subspace W .

Example 4: Let P53 have the inner product as in Example 3, with py(¢), p1(¢) and g the
polynomials described there. Find the best approximation to p(r) = 13 by polynomials
in Span {p()aplaq}‘
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The Cauchy-Schwarz Inequality: ForalluandvinV, 'L} ‘9
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The Triangle Inequality: For all u and ‘5' n V,

[u-vi[< [Juf[+]]v]



