Section 7.1 symmetric matrix : $A=A^{+}$(symmetric across the diag A)

THEOREM 1 If A is symmetric, then any two eigenvectors from different eigenspaces are orthogonal.

Square matrix

$\Rightarrow V_{1}$ is athogmal to V_{2}.

THEOREM $2 \quad$ An $n \times n$ matrix A is orthogonally diagonalizable if and only if A is a symmetric matrix.
def: A is called arlongontly diagonalizathe if there ext an rothoyond matrix $\left(P^{t}=P^{-1}\right) P \&$ a diagonal notr'x D
THEOREM 3
The Spectral Theorem for Symmetric Matrices
An $n \times n$ symmetric matrix A has the following properties:
a. A has n real eigenvalues, counting multiplicities.
b. The dimension of the eigenspace for each eigenvalue λ equals the multiplicity of λ as a root of the characteristic equation.
c. The eigenspaces are mutually orthogonal, in the sense that eigenvectors corresponding to different eigenvalues are orthogonal.
d. A is orthogonally diagonalizable.

Spectral Decomposition

Suppose $A=P D P^{-1}$, where the columns of P are orthonormal eigenvectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$ of A and the corresponding eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ are in the diagonal matrix D. Then, since $P^{-1}=P^{T}$,

$$
\begin{aligned}
A & =P D P^{T}=\left[\begin{array}{lll}
\mathbf{u}_{1} & \cdots & \mathbf{u}_{n}
\end{array}\right]\left[\begin{array}{lll}
\lambda_{1} & & 0 \\
& \ddots & \\
0 & & \lambda_{n}
\end{array}\right]\left[\begin{array}{c}
\mathbf{u}_{1}^{T} \\
\vdots \\
\mathbf{u}_{n}^{T}
\end{array}\right] \\
& =\left[\begin{array}{lll}
\lambda_{1} \mathbf{u}_{1} & \cdots & \lambda_{n} \mathbf{u}_{n}
\end{array}\right]\left[\begin{array}{c}
\mathbf{u}_{1}^{T} \\
\vdots \\
\mathbf{u}_{n}^{T}
\end{array}\right]
\end{aligned}
$$

Using the column-row expansion of a product (Theorem 10 in Section 2.4), we can write

$$
\begin{equation*}
A=\lambda_{1} \mathbf{u}_{1} \mathbf{u}_{1}^{T}+\lambda_{2} \mathbf{u}_{2} \mathbf{u}_{2}^{T}+\cdots+\lambda_{n} \mathbf{u}_{n} \mathbf{u}_{n}^{T} \tag{2}
\end{equation*}
$$

