
O-MINIMAL CHOW’S THEOREM

YILONG ZHANG

1. Introduction

The classical Chow’s theorem states that closed analytic subvarieties of projective space
Pn are algebraic. However, the statement is in general false when the ambient space is
replaced by Cn. For example, the graph of the entire function z ÞÑ ez is not zero locus of any
polynomial. A key feature is that this function does not behave well at infinity. On the other
hand, an o-minimal structure specifies a class of "tame" subsets of R2n (identified with Cn)
with strong finiteness properties which in particular excludes functions like ez. This leads
to a theorem due to Peterzil and Starchenko: Let X be a closed analytic subvariety Cn and
the underlying set of X is definable in an o-minimal structure, then X is algebraic.

2. O-Minimal Structure

Definition. A structure on the real field pR,`, ¨q is a collection S “ pSnqnPN such that for
each n P N:

(1). Sn is a boolean algebra of subsets of Rn;
(2). Sn contains the diagonal tpx1, ..., xnq P Rn|xi “ xju;
(3). If A P Sn, then Aˆ R and Rˆ A belongs to Sn`1;
(4). If A P Sn`1, then the projection of A on the first n-coordinates is in Sn;
(5). S3 contains the graphs of addition and multiplication.
Moreover, the structure S is called o-minimal if
(6). S1 only consists of semialgebraic sets of R, that is, finite unions of points and intervals.

Here a boolean algebra of sets on Sn is equivalent to Sn is closed under finite union,
intersection and complement. Moreover, the set of all structures on R has a natural partial
order given by inclusion. If S and S 1 are two structure, then S Ď S 1 ô Sn Ď S 1n for all n.

We set Sn to be the set of algebraic sets in Rn consisting of tx P Rn|fpxq “ 0u where
f P Rrx1, .., xns. One can readily check that condition (2), (3) and (5) hold for pSnqnPN,
but condition (1) and (4) fail: complement of t0u in R is not zero locus of any polynomial;
algebraic sets are not closed under projection, e.g., the projection of tpx, yq P R2|xy “ 1u

to x-axis is Rzt0u. This phenomenon comes from that restriction of linear projection being
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non-proper, which we will address later in the proof of our main theorem. So algebraic sets
do not form a structure.

However, we can consider the structure generated by algebraic sets, that is, we include all
complements and projections of algebraic sets, and we also allow their finite union, intersec-
tion, etc., then we obtain a (minimal) structure which contains all algebraic sets, where a
typical element is a finite union of

tx P Rn
|fpxq “ 0, g1pxq ą 0, ..., gkpxq ą 0u,

with f, g1, ..., gk P Rrx1, ..., xns and it is called a semialgebraic set. This is due to Tarski-
Seidenberg theorem, which states that projection of semialgebraic sets are still semialgebraic.
Moreover, condition (6) comes for free and it follows that

Example 1. Semialgebraic sets form an o-minimal structure, denoted as Rsa.

Actually, as a result of the definition, every o-minimal structure has to contain semialge-
braic sets. Namely, Rsa is the smallest o-minimal structure. There are examples of structure
that are not o-minimal, for example, all subsets of Rn, but in general they lose tameness
properties that we will mention at the end of this section. In the rest of notes, all the
structure will be o-minimal unless otherwise stated.

Definition. We call a set A Ă Rn S-definable if A P Sn. Moreover, if A P Sn, a function
f : AÑ Rm is called S-definable if its graph

Γpfq “ tpx, fpxqq P Rn`m
|x P Au

is S-definable.

For example, x ÞÑ
?

1´ x2 for |x| ď 1 is Ran-definable, but x ÞÑ ex is not (in any interval).
Let F be a set of real valued functions or subsets of Rn, one can define the structure RF

to be the structure generated by F . As an example that has been discussed, taking F to
be set of all real coefficients polynomials will produce Rsa. Accordingly, it produces various
kinds of (o-minimal) structures.

Example 2. Rexp is an o-minimal structure (due to Wilkie), where Fexp consists of the graph
tpx, ex|x P Rqu of the exponential function together with all polynomials.

Note that by reflection of the graph of ex, one see that x ÞÑ logpxq, x ą 0 is Rexp-definable.
For any r ą 0 (especially irrational r), x ÞÑ xr, x ą 0 is Rexp-definable For r ą 0, since
xr “ exppr logpxqq.

Example 3. Ran is an o-minimal structure (due to van den Dries), where

Fan “ tf |f “ g|r´1,1sn , g is a real analytic function defined on an open neighborhood of r´1, 1snu.
2



A typical element in Ran is a subanalytic sets in the real projective space RP n, where we
identify Rn with an open subset of RP n via

px1, ..., xnq ÞÑ r1, x1, ..., xns.

The function x ÞÑ arctanpxq, x P R is Ran-definable, but x ÞÑ ex, x P R is not.

Example 4. Ran, exp is an o-minimal structure (due to Miller and van den Dries), where
Fan, exp “ FanYFexp. E.g., the complex exponential function z ÞÑ ez restricted to p´8,8qˆ
r´1, 1s is Ran,exp-definable.

There are many recent application of this o-minimal structure in algebraic geometry, for
example, it is used in Bakker, Klingler and Tsimerman’s proof on Cattani-Deligne-Caplan’s
theorem on algebraicity of Hodge locus [3]; It is also used in Bakker, Brunebarbe and Tsimer-
man’s proof of the Griffiths conjecture [2]. The sauce is, period maps of variation of Hodge
structures are definable in Ran,exp.

2.1. Properties of O-minimal Structures. In this subsection, we discuss some basic
properties of o-minimal structures which will be used in the next section. Note that only
theorem 1 will really need o-minimality assumption and the rest propositions hold for a
structure in general. One can refer to [11] for detailed discussion.

Proposition 1. Let S be a structure, then
(1). The image and preimage of a definable set under a definable map is definable;
(2). The sum, product and composition of two definable functions are definable.

Proof. Both statements are directly followed from the definition. For (1), if f : AÑ Rm is a
definable function with domain A Ă Rn, then its image is the projection of the definable set
Γpfq to the second factor, therefore fpAq is definable. Let B Ď Rm definable, then f´1pBq

is the projection to the first factor of the intersection of Γpfq X Rn ˆB.
For (2), the argument of sum and product follows from property (5) of the structure, so
let’s prove the argument for composite. Let f : A Ñ Rm, and g : B Ñ Rp be two definable
functions with fpAq Ď B Ď Rm, then the graph Γpg ˝ fq is the projection to Aˆ Rp of

W “ tpx, y1, y2, zq P Aˆ Rm
ˆ Rm

ˆ Rp
|fpxq “ y1, gpy2q “ z, z1 “ z2u.

W is the intersection of Γpfq ˆ Γpgq with hyperplane y1 “ y2. �

As an application, the functions x ÞÑ sinpxq, x P R and complex exponential function
z ÞÑ ez, z P C are not definable in any o-minimal structure, since the preimages of 1 under
both functions are infinte and discrete, which violate the o-minimal criterion.

Proposition 2. Let A Ď Rn be a definable set with respect to a structure S (with ă being
definable), then with respect to the euclidean topology, its closure Ā, interior A˝, and frontier
frpAq :“ ĀzA are all S-definable.
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Proof. If suffices to prove for the closure. By definition

Ā “ tx P Rn
|@ε P R, Dy P A Ď Rn,

n
ÿ

i“1

pxi ´ yiq
2
ă ε2

u.

As we are familiar with writing D as projection, but we don’t know how to write @ set
theoretically. The good news is that there is a logic formula @ε, P pεq ô  Dε  P pεq, where
P pεq is a statement on ε. If we set

B “ tpx, ε, yq P Rn
ˆ Rˆ A|

n
ÿ

i“1

pxi ´ yiq
2
ă ε2

u,

and let π1,2 denote the projection to the Rn ˆ R and π1 to Rn, it follows that

Ā “ Rn
´ π1pRn

ˆ R´ π1,2pBqq

is definable. �

Theorem 1. If we fix an o-minimal structure S, there are several tameness properties of
definable sets [11]:
(i). Uniform Bounds on Fibers. Let A P Sm`n be a definable set, then there exists
N P N such that for all x P Rm, the set Ax “ ty P Rn|px, yq P Au has at most N connected
components.
(ii). Definable Cylindrical Cell Decomposition of Rn. There is a partition Rn “
š

Di into finitely many pairwise disjoint definable subsets Di, called cells, with respect to
a given finite collection tUjujPJ of definable sets. This leads to the definition of dimension
dimA of each definable set A P S.
(iii). Dimension is Well-Behaved. Let A P Sn be nonempty, then dim frpAq ă dimA.

3. O-Minimal Chow’s Theorem

Working over subsets of Cn, we are thinking of subsets of R2n. We will fix an o-minimal
structure S and we will call a set A definable in place of S-definable for convenience. The
goal of this section is to prove the following theorem by Peterzil and Starchenko [9], [10].

Theorem 2. O-Minimal Chow’s Theorem. Let Y Ď Cn be a closed analytic subvariety
whose underlying set is definable in an o-minimal structure S. Then Y is algebraic.

The information of Y being analytic is local: By definition, for each y P Y , there is an open
neighborhood U Ď Cn of p such that U X Y is common zero locus of holomorphic functions
f1, ..., fk on U . Comparatively, the conclusion of Y being algebraic is global: It states Y is
common zero locus of polynomials g1, ..., gl defined on the entire Cn. So o-minimal Chow’s
theorem can be interpreted as the definability condition controls the global behavior of an
analytic variety.
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The classical Chow’s theorem becomes a corollary:

Corollary. Chow’s theorem. Let X Ď Pn be a closed analytic subvariety, then X is
algebraic.

Proof. Choose any subspace H :“ Pn´1 Ď Pn and let X˝ “ XzH, so X˝ is a closed analytic
subvariety of Cn “ PnzH.

On the other hand, X˝ is actually definable thanks to the notion of analytic-geometric
category from [11]: Let Can be the analytic-geometry category of subanalytic sets, so in
particular, the inclusion map i : Cn ãÝÑ Pn is a Can-map, and the assumption implies X P

CanpPnq, so by property 1.5 in [11], X˝ “ i´1pXq P CanpCnq, in other words, X˝ is Ran-
definable. So by o-minimal Chow’s theorem, X˝ is an algebraic subvariety of Cn, i.e., X˝ is
an affine variety.

Now by definition, the analytic closure ofX˝ isX. On the other hand, the Zariski closure of
X˝ is an algebraic variety X̄ which contains X as closed analyic subvariety. By an argument
from [8], page 58, two closures agree, so X̄ “ X and X is algebraic.

�

Proof of Theorem 2. Our proof of theorem 2 majorly follows Bakker’s notes [1], page 8-9.
As a backup, we need the following lemma.

Lemma 1. Any definable holomorphic function f : Cn Ñ C is a polynomial.

Proof. We prove it by induction. When n “ 1, we claim that an entire definable function
f : C Ñ C is a polynomial. Otherwises, z “ 0 is not a pole of gpzq “ fp1{zq, so f has an
essential singularity at 8 (or equivalently for g at 0). By Big Picard theorem, almost all
value a P C are attained infinitely many times in an arbitrary small neighborhood of the
essential singularity. Up to adding a constant, we can assume a “ 0 is one of such value. On
the other hand, f cannot have accumulated zero otherwise being a constant, it follows that
f´1p0q is an infinite set and discrete, but this is not a definable set in C, which contradicts
to the assumption that f is definable.

Assume the lemma is true for n ´ 1. For a definable holomorphic function f : Cn Ñ C,
write Cn “ C ˆ Cn´1 with z coordinate on C and w coordinates on Cn´1. Take the Taylor
expansion of fpz, wq along the z axis:

(1) fpz, wq “
8
ÿ

k“0

gkpwqz
k, gkpwq “

1

k!

Bkf

Bzk
p0, wq.

First of all, it is an exercise to show that the partial derivatives of a definable differntiable
function are definable, so each gkpwq is definable, therefore a polynomial by the induction
hypothesis.
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Next, in order to show fpz, wq is a polynomial, we need to show the sum in p1q is finite.
Fix any w P Cn´1, it follows from the base step that z ÞÑ fwpzq :“ fpz, wq is a complex
polynomial. By projecting the graph Γpfq “ tpz, w, fpz, wqq P Cn`1|z P C, w P Cn´1u to the
last n-coordinates, the fiber at pw, vq P Cn´1 ˆ C is

Fw,v “ tz : fpz, wq “ vu.

If fw ı 0, the equality |Fw,v| “ degpfwq holds when fw ´ v has no multiple roots; Otherwise
fw is a zero polynomial, so Fw,v is either C or an empty set;

Now the Theorem 1(iii) applied to this projection says that the number of the connected
components are uniformally bounded. In particular, degpfwq is uniformally bounded, say by
N P N. It follows that gk ” 0 for k ą N , so fpz, wq “

řN
k“0 gkpwqz

k is a polynomial. �

Step 1. A Generic Linear Projection is Proper. We begin to prove the Theorem 2.
Assume Y Ď Cn is a closed analytic subvariety, and definable in some o-minimal structure
(for example Ran, Ran, exp) as assumed in the theorem.

This section section is devoted to prove the following lemma.

Lemma 2. There is a linear projection Cn Ñ Cd whose restriction to Y

π : Y Ñ Cd

is proper, i.e., preimage of every compact set is compact.

The proof can be carried out inductively. The idea is that the "bad projection" comes
from the projection center is close to locus of Y at infinity, but definablity guarantees the
behavior of Y is tame at infinity, so the "bad projection" locus has codimension at least one.
Intuitively, projecting Y “ tpx, yq|xy “ 1u to x-axis is "bad" because Y is close to the y-axis
asymtotically, but if we project to the line x “ y, the map will be proper.

For those who are familiar with algebraic geometry, the idea of the proof is essentially the
Noether normalization theorem for affine varieties.

Proof. We will first construct a projection Cn Ñ Cn´1 and then induct until n “ d.
The set of all pn´1q-dimensional complex linear subspace of Cn is bijective to its orthogonal

complement (using Hermitian inner product), which is bijective to the set of all 1-dimensional
complex linear subspace of Cn, or equivalently, the projective space Pn´1.

Actually, we can add Pn´1 to the boundary of Cn to form Pn by the following: If a line in
Cn`1 through origin intersect the affine subspace H “ Cn ˆ t1u Ď Cn`1, then it intersect at
only one point, which gives the identification H – Cn; If a line does not intersect H, then
it is contained in the hyperplane Cn ˆ t0u and these lines form Pn´1. These points are also
referred to points at infinity. One can see how the two pieces are glued together by writing
down coordinates (n “ 2 case is the Hopf fibration).
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In short,

Claim. There is an inclusion Cn Ď Pn such that the complement PnzCn parameterizes the
set of linear projections Cn Ñ Cn´1.

Explicitly, fix a point at infinity, say r0, 0, ..., 1s P Pn, denote H “ tr˚, ..., ˚, 0su Ă Pn the
projective subspace with last entry zero, one has the projection

π : Pnztr0, 0, ..., 1su Ñ H

rz0, z1, ..., zns ÞÑ rz0, z1..., zn´1s,

whose restriction to Cn defines the projection

(2) π|Cn : Cn
Ñ Cn´1.

Now, recall Y Ď Cn is a closed analytic subvariety, take its closure Ȳ in Pn. Since Y is
definable, according to Theorem 1 (iii), the frontier frpY q “ Ȳ zY Ď Pn´1 has real dimension
at most 2d ´ 1, so in particular it is not all of the Pn´1. Then project from any point
y8 P Pn´1zfrpY q as in p2q has bounded preimage over each bounded set of Cn´1, so it follows
that

Claim. The restriction of projection from y8 P Pn´1zBY to Y

π|Y : Y Ñ Cn´1

is proper.

The famous Remmert’s proper mapping theorem (see [6], p.34) states that if f : M Ñ N is a
holomorphic map between two complex manifolds, andA a analytic subvariety ofM such that
f |A is proper, then fpAq is an analytic subvariety in N . According to this, π|Y pY q Ď Cn´1

is an analytic subvariety. Moreover, it is closed since proper map preserves closedness; It
still has dimension d since the map is finite; π|Y pY q is still definable since it is restriction of
linear projection. Now one can repeat the construction above until n “ d. �

Step 2. Analytic Covering Map. Y is an closed analytic subvariety of Cn “ Cn´d ˆCd,
with π the restriction to Y of the projection to the second factor and we can assume it is
proper by the previous discussion. Also note that πpY q is a closed analytic subvariety of Cd

with dimension d, so that is the whole Cd. Therefore the projection

π : Y Ñ Cd

is proper, finite and surjective.
There exist a closed proper analytic subvariety Z Ď Cd such that restriction of π to

Y zπ´1pZq is an analytic covering space. In other words, let Y0 :“ Y X π´1pZq, denote
7



U “ Y zY0 and V “ CdzZ, then the map

(3) π|U : U Ñ V

is a local biholomorphism. Y0 is a closed analytic subset of Y . Typically, Y0 contains singular
points of Y and those y where the tangent map π˚ : TyY Ñ TπpyqCd is not surjective.

As a motivating example, take a polynomial f , project its graph tpz, fpzqqu Ď C2 to the
second coordinate, so branching locus is the set of values v P C where f ´ v has multiple
roots, and ramification locus is those multiple roots on the graph.

We take Z the minimal one satisfying the conditions above, and call Z the branching locus.
Additionally, there is no harm for us to assume Y is irreducible. If so, U will be connected
covering space over V .

Step 3. Symmetric Functions are Extendable. We shall prove that Y is algebraic
using the covering map p3q. More precisely, we will find certain polynomials whose common
zero locus defines Y . To better explain the idea, let me first assume that d “ n´ 1, that is,
Y is a hypersurface of dimension d in Cd`1. The general case will be discussed at the end.

Let m be the cardinality of the fiber of the π|U . Let x0 P V , then there is an open
neighborhood W of x0 such that π´1pW q is biholomorphic to disjoint union of m-copies of
W . Let

φk : W Ñ C, i “ 1, ...,m

be the holomorphic functions such that x ÞÑ px, φkpxqq P W ˆ C Ď Cd`1 are sections of
projection π´1pW q Ñ W . Therefore we can write π´1pW q as zero locus in W ˆC of a single
polynomial

(4)
m
ź

k“1

py ´ φkpxqq “ 0.

Expand the polynomial p4q, the equation becomes

(5) ym ´ σ1pxqy
m´1

` σ2pxqy
m´2

` ¨ ¨ ¨ ` p´1qmσmpxq “ 0,

with coefficients
σ1 “

ÿ

i

φi, σ2 “
ÿ

iăj

φiφj, ..., σm “ φ1 ¨ ¨ ¨φm

are elementary symmetric functions on distinctm-points φ1pxq, ..., φmpxq parameterized by x.
These σk’s are holomorphic and can be analytically continued to the entire V (in comparison
φk cannot). So equation p5q for x varing in the entire V defines U Ď Cd`1.

Recall that in complex analysis, Riemann’s extension theorem says that if a holomorphic
function f defined on D´tau is bounded around a, where D Ď C is an open subset, then f is
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holomorphically extendable to the entire D. The same statement holds in higher dimensions
(see [5], p.80), with D replaced by an open set in Cn and tau by a (proper) analytic subset.

Now each σi is bounded in an neighborhood of branching locus πpY0q as a result of π being
proper, so by Riemann extension theorem implies that σk extends to a global holomophic
function σ̄k : Cd Ñ C.
Definability. On the other hand, we should show σ̄k is definable. Note that this will follow
from definability of σk according to Proposition 2, so it suffices to show σk is definable.
The idea is that, U is definable in the first place since it is the locus where the fiber size is
maximal. To be more specific, V can be written as projection to Cd of a definable set

Pm :“
 

px, y1, ..., ymq P Cd
ˆ Cm

| yi P π
´1
pxq, i “ 1, ...,muz

ď

iăj

tyi “ yju
(

,

so V is definable, and therefore U “ π´1pV q X Y is definable.
To show that σk is definable, note that there is a m!-to-1 covering map

τk : Pm Ñ V ˆ C, px, y1, ..., ymq ÞÑ px,
ÿ

l1ă¨¨¨ălk

yl1 ¨ ¨ ¨ ylkq

which preserves projection to V . In other words, we have a commutative diagram:

Pm V ˆ C

V

τk

π π

Γpσkq

Also note the image of τk coincides with graph of σk. This shows that σk is definable. It
follows that σ̄i is both definable and holomorphic, so is algebraic according to Lemma 1.

So we can consider the equation

G “ ym ´ σ̄1pxqy
m´1

` σ̄2pxqy
m´2

` ¨ ¨ ¨ ` p´1qmσ̄mpxq “ 0

on Cd`1.
Then one shows that Y “ tG “ 0u is defined by a single polynomial, so it is algebraic.

This finishes the proof when n´ 1 “ d.
General Situation. When n ´ 2 ě d, the local section φi consists of n ´ d holomorphic
functions, so we need more equations to define π´1pW q. One way to do it ([1], p.9) is to
consider the symmetric product SymmCn´d which parameterizes unorderedm-tuple of points
in Cn´d. It is an affine variety whose coordinate ring is the invariant subring of m-copy of
Crt1, ..., tn´ds under permutation group Sm-action. Consider the map

F : V Ñ SymmCn´d, x ÞÑ π´1
pxq.

9



One can argue extendability of holomorphic map F , eventually, Y will be graph of the
extended map F̄ in Cd ˆ SymmCn´d. To extract polynomials explicitly, one need to find
generators of coordinate ring of symmetric product.

Another approach ([4], p.44) gives more directly the set of defining equations. More
explicitly, one consider the polynomial in 2n´ d variables

P px, y, wq “ xw, y ´ φ1pxqy ¨ ¨ ¨ xw, y ´ φmpxqy

where xa, by :“
řm
i“1 aibi and the author shows that the coefficients in the expansion P px, y, wq “

ř

|I|“m ηIpx, yqw
I gives the set of defining equation of U . Similarly their extensions will be

definable and holomorphic, and cuts out Y in Cn, so Y is algebraic. �
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