The Riemann Mapping Theorem

Yongheng Zhang

The proof of the Riemann Mapping Theorem is a collection of propositions from Steven R. Bell’s MA530 class notes in Spring 2010. The familiarity with the Maximum Principle and the Schwarz lemma is assumed.

Lemma 1 (Log and Root function). Let f be analytic and its domain Ω simply connected. If f is non-vanishing, then for any $N \in \mathbb{Z}_+$, there is an analytic function h such that $h^N = f$.

Proof. Since f is non-vanishing, there is no problem to write $\frac{f'}{f}$ and it is analytic. Fix a point A in Ω and let $z \in \Omega$. Because Ω is path connected, there is at least one path γ_A in Ω. So we can define $G(z) := \int_{\gamma_A} \frac{f'(\omega)}{f(\omega)} d\omega$. But Ω is simply connected and so G is independent of paths and thus well-defined. We will also see that G is analytic. Let $z_0 \in \Omega$. Since Ω is open, some disk $D_r(z_0)$ is contained in Ω and thus for any $z \in D_r(z_0)$, the straight line L_{z_0} lies in $D_r(z_0)$ and thus in Ω. By simple connectedness, $F(z) - F(z_0) = \int_{\gamma_{z_0}} \frac{f'(\omega)}{f(\omega)} d\omega = \int_{L_{z_0}} \frac{f'(\omega)}{f(\omega)} d\omega$. Therefore,

$$\lim_{z \to z_0} \frac{F(z) - F(z_0)}{z - z_0} = \lim_{z \to z_0} \int_{L_{z_0}} \frac{f'(\omega)}{f(\omega)} - \frac{f'(z_0)}{f(z_0)} d\omega \leq \lim_{z \to z_0} \frac{1}{z - z_0} \int_{L_{z_0}} \left| \frac{f'(\omega)}{f(\omega)} - \frac{f'(z_0)}{f(z_0)} \right| d\omega \leq \lim_{z \to z_0} \frac{\max_{\omega \in L_{z_0}} \left| \frac{f'(\omega)}{f(\omega)} - \frac{f'(z_0)}{f(z_0)} \right|}{z - z_0} = 0,$$

because $\frac{f'}{f}$ is continuous. This shows that G is analytic. Notice that $(f e^{-G})' = f' e^{-G} - fG' e^{-G} = f'e^{-G} - f \frac{f'}{f} e^{-G} = 0$. Thus, $f e^{-G}$ is a constant c. So $f = ce^{-G} = e^{\ln c + G}$. Let $g := \ln c + G$. So g is analytic and $f = e^g$. Hence, $h := e^{\frac{g}{N}}$ is analytic and we have $h^N = f$, as desired.

Corollary 2 (1-1 \Rightarrow nonvanishing derivative). Let f be analytic. If f is one-to-one, then f' is non-vanishing.

Proof. Let z_0 be in the domain of f and let $\omega_0 = f(z_0)$. Then $f - \omega_0$ has z_0 as a zero. Notice that $f - \omega_0 \not\equiv 0$ since f is one-to-one. Also because f is analytic, z_0 is an isolated zero of $f(z) - \omega_0$. Hence, $f(z) - \omega_0 = (z - a)^N H(z)$ for some $N \in \mathbb{Z}_+$ and H is analytic and H is nonvanishing on some disk centered at z_0. By the previous lemma, there is analytic h such that $H = h^N$ (we know $h(z_0) \neq 0$). Thus, $f(z) - \omega_0 = [(z - z_0)h(z)]^N$. Let $g(z) = (z - z_0)h(z)$. Then $f(z) - \omega_0 = g^N(z)$. Because $g'(z_0) = h(z_0) \neq 0$, by complex inverse function theorem, g is locally one-to-one. Thus, f is locally N-to-one. But f is one-to-one. This forces $N = 1$. Thus, $f(z) = w_0 + g(z)$ and we have $f'(z_0) = g'(z_0) \neq 0$, as desired.

Lemma 3 (Rouché). Suppose f and g are analytic on $D_R(a)$ and $0 < r < R$. If $|f(z) - g(z)| < |g(z)|$ on $C_r(a)$, then f and g have the same number of zeros inside $C_r(a)$.
Proof. Since $|f(z) - g(z)| < |g(z)|$ on $C_r(a)$, f and g are both non-vanishing on $C_r(a)$. Hence, by the argument principle $\frac{1}{2\pi i} \int_{C_r(a)} \frac{f'(z)}{f(z)}dz$ and $\frac{1}{2\pi i} \int_{C_r(a)} \frac{g'(z)}{g(z)}dz$ are the numbers of zeros of f and g inside $C_r(a)$, respectively. Notice that

$$\frac{1}{2\pi i} \int_{C_r(a)} \frac{f'(z)}{f(z)}dz = \frac{1}{2\pi i} \int_{C_r(a)} f'(z) - \frac{g'(z)}{g(z)}dz,$$

which is the difference of the numbers of zeros of f and g inside $C_r(a)$. However, from $|f(z) - g(z)| < |g(z)|$ on $C_r(a)$ we know that $\frac{|f(z)|}{|g(z)|} - 1 < 1$. This means $\{z \in \mathbb{C} | \Re z \leq 0, \Im z = 0\}$ can be made a branch cut for $\Log f$. Therefore, $\frac{1}{2\pi i} \int_{C_r(a)} \frac{f'(z)}{f(z)}dz = \frac{1}{2\pi i} \int_{C_r(a)} \frac{d}{dz} \Log f(z)dz = 0$. Thus, f and g have the same number of zeros inside $C_r(a)$.

\[\square\]

Corollary 4 (Hurwicz No.1). Suppose the sequence of analytic functions $\langle f_n \rangle$ on a domain Ω is nonvanishing. If $f_n \to f$ uniformly on compacts of Ω, then either f is non-vanishing on Ω, or $f \equiv 0$ on Ω (e.g., z^n on $D_1(0)\setminus\{0\}$).

Proof. If $f \equiv 0$, then we are done. Suppose $f \not\equiv 0$. So there is $z_0 \in \Omega$ such that $f(z_0) = 0$. Because f_n are analytic and the convergence is uniform on compacts, f is analytic (by Morera’s theorem + uniform limit of continuous functions is continuous + change of integral and limit signs by uniform convergence).

Thus, z_0 is an isolated zero (this can be seen by the continuity of h where $f(z) = (z - z_0)^N h(z)$ and $h(z_0) \neq 0$. Thus, there is $r > 0$ such that f is not zero on $D_r(z_0)\setminus\{z_0\}$ and $\overline{D_r(z_0)} \subset \Omega$. Because f is analytic, f is continuous. Thus, $|f|$ is continuous. Since we also know that $C_r(z_0)$ is compact and f is nonzero on it, $\min_{C_r(z_0)} |f|$ exists and is nonzero. Because f_n converges uniformly on compacts, there is $n \in \mathbb{Z}_+$ (actually, for all n greater than a particular $N \in \mathbb{Z}_+$) such that $|f_n(z) - f(z)| < \min_{C_r(z_0)} |f|$ on $C_r(z_0)$. By Rouche’s theorem, f_n and f have the same number of zeros inside $C_r(z_0)$. But f_n has none and f has one. This is a contradiction. Consequently, f is non-vanishing.

\[\square\]

Corollary 5 (Hurwicz No.2). Suppose f_n are univalent (one-to-one and analytic) on a domain Ω which converges uniformly on compacts to f. Then either f is univalent, or f is constant on Ω.

Proof. If $f \equiv C$, then we are done. Suppose $f \not\equiv C$. For the sake of contradiction, assume that there are $z_1, z_2 \in \Omega$ with $z_1 \neq z_2$ such that $f(z_1) = f(z_2) = w$. Define functions $F_n := f_n - w$ and $F := f - w$. So $F(z_1) = F(z_2) = 0$ and F is a non-constant analytic function. Repeating the proof of Hurwicz No.1, we see that there are two discs $D_{r_1}(z_1)$ and $D_{r_2}(z_2)$ with non-intersecting closures such that there is $n \in \mathbb{Z}_+$ (any n greater than N_1 and N_2 would do it) such that F_n and F have the same number of zeros in $D_{r_1}(z_1)$ and $D_{r_2}(z_2)$, respectively. Hence, there are two distinct points making F_n zero. Therefore, f_n is not one-to-one, which is a contradiction. This shows f must be one-to-one.

\[\square\]

Lemma 6 (Montel). Suppose f_n’s are analytic on a domain Ω. If f_n’s are uniformly bounded on compact subsets of Ω, then there is a subsequence $\langle f_{n_k} \rangle$ which converges uniformly on compact subsets to a analytic function f.

Proof. If we can show that f_n’s are equicontinuous, then since we also know Ω is separable and at each point (a one point set is compact) of its skeleton subset in $\Omega \{f_n\}$ is bounded, by Ascoli-Arzelà’s theorem (see the note in the Real Analysis section of the webpage), then there is a subsequence $\langle f_{n_k} \rangle$ which converges uniformly on compact subsets to a function f. We also know previously that f is analytic
(See the hint in the proof of Hurwicz No.1).

Let \(z_0 \in \Omega \). Let \(D_r(z_0) \subset \Omega \) since \(\Omega \) is open. Because \(f_n \)'s are uniformly bounded on compacts, we may let \(M = \max_{D_r(z_0)} |f_n| \). Recall that \(f(z) = \frac{1}{2\pi i} \int_{C_{2r}(z_0)} \frac{f(\omega)}{\omega - z} d\omega \). If \(z \in D_r(z_0) \), then

\[
|f_n(z) - f_n(z_0)| = \frac{1}{2\pi} |z - z_0| \int_{C_{2r}(z_0)} \frac{f_n(\omega)}{(\omega - z)(\omega - z_0)} d\omega \leq \frac{1}{2\pi} |z - z_0| \frac{M}{(2r - r)^2} 2\pi(2r) = |z - z_0| \frac{2M}{r}.
\]

This shows \(f_n \)'s are quicontinuous on \(\Omega \).

\[\square\]

Theorem 7 (Riemann Mapping Theorem). Let \(\Omega \) be a simply connected domain and \(\Omega \neq \mathbb{C} \). Then there is a bijective analytic function \(f : \Omega \rightarrow D_1(0) \).

Proof. Let \(F \) be the family of analytic functions mapping \(\Omega \) injectively into \(D_1(0) \) (we didn’t say the functions are surjective). We first claim that \(F \neq \emptyset \). To see it, we consider two cases. If \(\Omega \) is bounded, then \(f(z) = \frac{r}{z} \) is in \(F \) where \(R \) is the bound of \(|f| \). If \(\Omega \) is unbounded, then since \(\Omega \) is not \(\mathbb{C} \), there is \(\omega_0 \in \mathbb{C} \backslash \Omega \). Thus, the function \(g(z) := z - \omega_0 \) on \(\Omega \) is nonvanishing and analytic on simply connected \(\Omega \). Thus, by Lemma 1, there is an analytic function \(G \) on \(\Omega \) such that \(G^2(z) = g(z) \). Let \(G(z_1) = G(z_2) \), then \(G^2(z_1) = G^2(z_2) \), from where we get \(z_1 = z_2 \). So \(G \) is one-to-one. Because the proper subset \(\Omega \) of \(\mathbb{C} \) is simply connected and \(G \) is the square root function of \(g \), \(G(\Omega) \) misses some open disk \(D_t(a) \). Hence, if we denote \(H \) by \(H(z) = \frac{r}{z-a} \) which is one-to-one and analytic, \(F \circ G \) maps \(\Omega \) one-to-one into \(D_1(0) \).

For any \(f \in F \), because it is one-to-one, by Corollary 2, \(f' \) is non-vanishing. Let \(a \in \Omega \). Then, \(M := \sup_{f \in F} |f'(a)| \neq 0 \). On the other hand, by Cauchy’s estimates, \(|f'(a)| \leq \frac{\max_{\Omega} |f|}{1 - |a|} \leq \frac{1}{r} \). But \(r \leq \text{dist}(a, b\Omega) \). Hence, \(M \leq \frac{1}{\text{dist}(a, b\Omega)} \).

Let \(f_n \) be in \(F \) such that \(|f_n'(a)| \not\leq M \). Because \(f_n \) are uniformly bounded by 1, by Lemma 6, there is a subsequence \(f_{n_k} \) which converges uniformly on compact subsets of \(\Omega \) to an analytic function \(f \) on \(\Omega \). This is the mapping that we want.

Firstly, because \(f_{n_k} \rightarrow f \), \(f_{n_k}'(a) \rightarrow f'(a) \). Thus, \(|f_{n_k}'(a)| \rightarrow |f'(a)| \). Hence, \(|f'(a)| \neq 0 \). This shows \(f \neq C \). Therefore, since \(f_{n_k} \) are one-to-one, by Lemma 5, \(f \) is one-to-one.

Secondly, since \(f_{n_k} \rightarrow f \) and \(f_{n_k} : \Omega \rightarrow D_1(0) \), \(f : \Omega \rightarrow \overline{D_1(0)} \). But by the Maximum Principle, if \(|f| \) takes 1 which is a maximum at some point inside \(\Omega \), \(f \) would be constant, which violates that \(f'(a) \neq 0 \). Therefore, \(f \) maps \(\Omega \) into \(D_1(0) \).

Finally, we only need to show \(f \) is surjective. For the sake of contradiction, suppose there is \(\omega_0 \in D_1(0) \) such that \(\omega_0 \notin f(\Omega) \). Let \(\varphi_{-\omega_0}(z) = \frac{1}{z - \omega_0} \), then \(\varphi_{-\omega_0} \circ f \) is nonvanishing on simply connected \(\Omega \). Thus, by Lemma 1, there is analytic \(g \) on \(\Omega \) such that \(g^2 \equiv \varphi_{-\omega_0} \circ f \) and it is not hard to see that \(g \) is one-to-one since \(\varphi_{-\omega_0} \) and \(f \) are one-to-one. Denote \(b := g(a) \) and define \(h := \varphi_{-b} \circ g \). Then \(h \in F \). If we define \(F := \varphi_{-b}^{-1} \circ h \circ \varphi_{-b} \), where \(s(z) = z^2 \), then it is not hard to see that \(f = F \circ h \). Since \(F \) is not one-to-one, by Schwarz’s lemma, \(|F'(0)| < 1 \) (if \(|F'(0)| = 1 \), then \(F(z) = \lambda z \), which is one-to-one). Thus, \(M = |f'(a)| = |F'(h(a))||h'(a)| = |F'(0)||h'(a)| < |h'(a)| \). So \(|h'(a)| > M \), which contradicts that \(h \in F \). Consequently, \(f \) has to be surjective. \[\square\]