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Connes and Higson defined a bivariant homology theory E(A4, B) for separable
C*-algebras. The elements of E(A, B) are taken to be homotopy classes of
asymptotic momorphisms from SA® X to SB®X. In symbols E(A4, B)x
[[S4, SB® ¥ ]]. If 4 is K-nuclear then E-theory agrees with Kasparov’s bivariant
K-theory. We show that, in many cases, one need not take suspensions to calculate
the E-theory group E(A, B). For many A, we show

E(4, By=[[4, B®X]]

for all B. Among the A for which this is true are Co(X\{pr}) for X with the
homotopy type of a finite, connected CW complex. This gives a concrete realization
of K-homology, related to the Brown—-Douglas-Fililmore description. For example,
K, (X) arises as asymptotic representations,

Ko(X) = [[ColX), A7]].

Other A for which our isomorphic holds include the nonunital dimension-drop
intervals. In this case, there is no distinction between s-homomorphisms and
asymptotic morphisms so we have succeeded in classifying all x-homomorphisms
from a dimension-drop interval to a stable C*-algebra. This was subsequently used
by Elliott (J. Reine Angew. Math. 443 (1993), 179-219) in the classification of
certain C*-algebras. The dimension-drop interval may also be used to describe
K_(X:Z/n) in terms of paths of asymptotic representations of Co(X). © 1994
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368 DADARLAT AND LORING

1. ASYMPTOTIC REPRESENTATIONS

The most obvious generalization of a continuous function between com-
pact spaces is a *-homomorphism between unital C*-algebras. Recently,
interest among operator algebraists has turned to more general types of
mappings between C*-algebras, such as the asymptotic momorphisms used
by Connes and Highson [5] to define £-theory. A natural question is what
topological objects correspond to these mappings.

The continuous functions ¥ — X between compact spaces correspond to
unital *-homomorphisms C(X)— C(Y). We will assume X and Y are
metrizable so the C*-algebras C(X) and C(Y) will be separable. It can be
shown [4,10] that a unital asymptotic morphism C(X)~ C(Y)
corresponds to a path of continuous functions f,: ¥ — Z, parameterized by
te[1, o), where Z is an appropriate space containing X. Moreover, as ¢
tends to infinity, the image of f, will approach X in a suitable sense. As long
as X is an ANR, f, can be deformed to a path of functions from Y to X.
The commutative case is very interesting and nontrivial [4, 6, 7, 10].

There are, however, topological reasons to be interested in asymptotic
momorphisms from C(.X) to other, noncommutative C*-algebras. Here, the
distinction between asymptotic momorphisms and s*-homomorphisms
becomes even more critical. For example, suppose X is locally compact and
path-connected, x,€ X, and let ¥ denote the C*-algebra of compact
operators on a separable Hilbert space. The x-homomorphisms
Co(X\{x0})— # are all homotopic. Not only is this false for asymptotic
momorphisms, but we will show that the homotopy classes correspond to
K-homology classes.

In addition, the injective asymptotic momorphisms from C(X) to any
C*-algebra correspond to deformations of the algebra C(X) and so are
candidates for quantum spaces. We will not explore this connection here,
but refer the reader to [5, 13, 18, 20].

Let X denote a locally compact space and Cy(X) the algebra of con-
tinuous complex valued functions on X vanishing at infinity. By an
asymptotic representation of C,{X) we mean a collection, parameterized by
te[1, w0), of positive, contractive linear maps

@, Co(X)—» X
such that 1+ ¢,(f) is continuous for each f and, for all f, ge C(X),
lo. (/)@ (8)— o, (/)] —0.

We will denote such an asymptotic representation by (¢,). Two asymptotic
representations (¢,) and (y,) are called equivalent if, for all f]
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(The definition of asymptotic representation is stronger than just requiring
an asymptotic momorphism from C(X) to ). However, it is known [10]
that every asymptotic momorphism from C(X) to J is equivalent to an
asymptotic representation.)

The choice of a real parameter is important here for detecting torsion. By
different techniques, we obtained results [12] regarding the existence of
enough integer parameterized “quasi-representations,” to detect nontorsion
elements of K°(X) for many spaces.

Before defining homotopy, we need to make clear the notion of a family
of asymptotic representations parameterized by a compact space S. By the
notation

@) : Co(X) > X | 565}

we mean that, for each (s,t)eSx[1, o), there is a positive, linear
contraction

@1 Co(X) > K,

for each fe Co(X) the function (s, 1) — @¢'(f) is jointly continuous, and,
for all f, ge Cy(X), the function

(s, )= o (f8) — @i(f) 91" (8)]

is in Cy(Sx[1, )). Equivalence of families is defined by requiring the
pointwise difference to lie in Co(Sx [ 1, o0), A7),

Two asymptotic representations (¢,) and (y,) are homotopic if there
exists a family {(¢!”) | s€ [0, 1]} with (¢!*’) equal to (¢,) and (¢'") equal
to (¥,). Two families, parameterized by S, are homotopic if there is a
family parameterized by S x [0, 1] with the original families arising from
restriction to Sx {0} and §x {1}.

As a consequence of our main theorems, we have the following descrip-
tions of Ky(X) and K, (X).

THEOREM 1.1. Let X be a finite, connected CW complex with one point
removed. Then K,(X) is naturally isomorphic to the group of all asymptotic
representations of Co(X) modulo homotopy. Also, K, (X) is naturally
isomorphic to the group of all families of asymptotic representations of
Co(X), indexed by the circle and vanishing at the basepoint, modulo
homotopy. In both cases, the addition comes from the direct sum of
asymptotic representations. (See also Corollary 5.5.)

For Mod-n K-homology we have a nice description in degree one. Again
with X a finite, connected CW complex with one point removed, we show
that X, (X; Z/n) is isomorphic to the group of homotopy classes of families
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of asymptotic representations of Cy(X), indexed by [0, 1], that are zero at
one end and, at the other end, are an n-fold multiple of an asymptotic
representation.

Let T? denote the two dimensional torus. It follows from Theorem 1.1
that [[Co(T*\{pt}), #" ]]1=Z. This explains once more Voiculescu’s
example of asymptotically commuting finite rank unitaries without
commuting approximants {24].

Our main objective is to determine when it is possible to dispense with
the suspensions used in the definition of E-theory. This cannot be true in
general since [[ 4, B® A ]] is not always a group (e.g., for 4 =C). We are
also going to need at least an asymptotic momorphism from 4 — S?°4 ® X~
which induces a homotopy equivalence. This, together with the “Bott
map,” a specific asymptotic momorphism from Cy(R?) to ", will at least
give us a way of realizing all of E(A, B) without suspensions.

To prove that dispensing with these suspensions does not enlarge
the group we will have to prove some partial forms of excision via
asymptotic momorphisms. In general, given an exact sequence of separable
C*-algebras 0 » I — 4 %> B — 0, the mapping cone C, becomes homotopy
equivalent to / via asymptotic momorphisms only after suspending. Such a
homotopy equivalence holds without the need for suspensions in enough
special cases for us to derive our results. For instance that holds true when
p has a right inverse.

2. E-THEORY

We will now establish our notation and state those results from [5, 10]
that we shall need. Henceforth, all C*-algebras will be separable and
[A4, B] will denote the homotopy classes of *-homomorphisms from A4 to
B. We will denote by %24 the category with objects separable C*-algebras
and morphism sets [ 4, B].

Connes and Highson [5] defined an asymptotic momorphism from A to
B, denoted (¢,):A4—-B, to be a family of functions ¢,:4—- B,
parameterized by 7€ [1, «c), such that r+— ¢,(a) is continuous for all a
and, as t — oo,

lo.(ab)— ¢, (a) @,(8)] -0,
lo.(a*)—¢(a)*] =0,
lo.(Aa+b)— g, (a)— @, (b)I -0
for all a, be A and AeC.

Suppose (¢@,) and (¥,) are both asymptotic momorphisms. If, for all
aeA,

lo,(a)—¥.(a)l -0
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then (¢,) and (y¥,) are called equivalent. A homotopy from ¢ to ¢ is
asymptotic momorphism (@,) from A to C[0, 1]® B such that é,- P, and
0, @, are asymptotic momorphisms equal to ¢ and .

We will let o/ 5422 denote the category of separable C*-algebras but with
arrows homotopy classes of asymptotic momorphisms. We shall let
[[A4, B]] denote the set of homotopy classes of asymptotic momorphisms
from 4 to B and [[¢]] will denote the homotopy class of an asymptotic
momorphism ¢ = (¢,).

The connection between Fes and foys is that we will identify a
x-homomorphism ¢: 4 » B with the asymptotic momorphism ¢, = ¢.

Asymptotic homomorphisms can be composed, the result being well
defined only up to a homotopy equivalence. This involves restriction to a
dense subalgebra and reparameterization. Since at most of the time we will
only compose an asymptotic momorphism with a *-homomorphism, which
is easy, we simply refer the reader to [5] for details.

A useful observation from [ 5] is that the equivalence classes of asymptotic
momorphisms from A4 to B correspond to the x-homomorphisms

Cb([I’ w): B)

A= (L, ), B

There is a reduction one can make to asymptotic momorphisms and
homotopies that have better properties. We used this in the last section to
get better descriptions of K-homology. Specifically, it follows immediately
from the Choi-Effros lifting theorem [2] that if A4 is nuclear, any
asymptotic momorphism (¢,): 4 — B is equivalent to (¢;) so that ¢, is
linear, contractive, and positive.

When S is compact, we may identify

Cy([1, c0), C(S, B))=C,([1, v} xS, B)

which explains the definition of homotopy in terms of families of
asymptotic representations.

There is an addition defined on {[4, B® 2 ]] given by direct summa-
tion and composing with the *-homomorphism ¥ @ X o M, (A )= X .
Without more structure, all one can say is that [[4, B® X" ]] is an abelian
semigroup with unit. When A is a suspension, for example, this is a group.

Connes and Higson define E(4,B) to be the abelian group
[([SA® X, SB® A ]]. There are isomorphisms

E(4, By=E(A, S*B)= E(S4, SB) =~ E(5°4, B)

reflecting the fact that Co(R')® o and C,(R*)® A are isomorphic as
objects of ooy It is also easy to see that E(A4, B) is isomorphic to
[[S4, SB® A" ]].
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For K-nuclear C*-algebras [23], E-theory coincides with Kasparov’s
[197 KK-theory, a fact we shall use when convenient.

An asymptotic momorphism, and hence an E-theory element, induces a
map on K-theory. Given (¢,): A —» B and a projection p in A, the class of
¢, ([p]) in Ky(B) is determined by any projection that is close to ¢,(p)
for some sufficiently large value of 7. For unitaries, a similar construction
1s used.

For the general theory, suspensions are inevitable. A suspension is
needed for the group structure. Also, Bott periodicity requires an element
in E(C, Cy(R?)) inducing an isomorphism on K-theory. However, there is
no such map at the level of an asymptotic momorphism from C to C,(R?).

We will also make use of an asymptotic momorphism

(@) Co(R?) > A

inducing an isomorphism in K-theory. We do not need to know anything
about a but that it exists. It is described in various ways in [5, 10, 12].

3. ExcisioN RESULTS

Given a short exact sequence 0 —» [ — 4 -2 B — 0, there is a long exact
sequence, called the Puppe sequence,

- = [[D, $4]1]1 = [[D, SB1] = [[D, C, 11 [[D, 411 [LD, B]]

for any D. The objects here are, in general, just pointed sets. The base point
corresponds to the zero morphism. See [8, 10] for related sequences. The
reason that there are exact sequences in E-theory involving / is that ST and
SC, are equivalent in .&/sg . In this section, we examine cases where / and
C, are equivalent in /sy without the need to suspend. If this is the case,
we will say the given exact sequence is excisive.

One obvious place to look is at the commutative case. An important
case is

0— Cy(R") = C(S") > C — 0.

Since the mapping cone construction and tensor products commute, the
extension

0 Co(R"Y®B—— C(SY® B2+ C®B—~0 (1)

is excisive. Thus we have the following lemma which we used implicitly in
the first section when we ignored the difference between free and base-point
fixing homotopies.
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LeMMA 3.1. The sequences
0 [[4,5"B1]1— [[4, C(S")® B11-" [[4, B]1 -0,
0 [4, S"B] —* [4, C(S")® B] "> [4, B] >0
are exact for all A and B.

Proof. Since (1) is a split-exact sequence the Puppe sequence gives us
a split-exact sequence

0-[[4,C,11-[[4, C(SY®B]]1—-[[4, B]]—~0.

By excision, we may replace C, by Co(R")® B to get the result. Since the
homotopy equivalence of the mapping cone and ideal is actually given by
+*-homomorphisms, the second, well-known, sequence is also exact. ||

A key element in the proof of our main result is the analogous result for
the unitization . of the compact operators.

PROPOSITION 3.2. Any split-exact sequence of separable C*-algebras is
excisive. Therefore, if a: B— A is a splitting for

0-»J—>A—"+B-0
then, for D any C*-algebra, ¢, is a splitting for the exact sequence
0-[[D,J11-[[D, 411~ [[D, B]1—0.

Proof. Let CB=Cy(0,1]® B. Following the usual construction we
find

Cr={(x+0(f(1)),/)e A®CB| xeJ}

and the canonical inclusion 1: J — C, is given by 1(x) = (x, 0).
Let O<u,<1 be a quasicentral approximate unit in J, indexed by
[1, o), with ¢+ u, continuous. Define

p.:C[0,1]®B— A4
by setting
pl(f®b)=f(ul) G(b)

and extending. To do that we use Lemma 5 in [5]. Notice that p,(CB) <= J.
Now define ¢,: C, — J by

@ x+o(f(1))S)=x+p, (/)
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This is clearly an asymptotically linear, selfadjoint map with 1+— ¢, (a)
continuous for any a.
For fe CB and xeJ,

o (f)x—a(f(1))x]| >0

since u, is an approximate unit in J. Therefore, with

a=(x+a(f(1)),f)
b=(y+o(g(l)),g)
ab = (xy +xo(g(1)) +a(f(1))y +a(f(1) g(1)). f2)

we calculate

le.(a) ¢, (b)— ¢, (ab)l
= (x+p, (I Ny +p.(g))— Lxy +xa(g(1)) + a(f(1))y + p.(f2)]
< lxp,(g) —xa(g(W)l + o (S)y —a(S(I))y]
+lo(fyp.(g)—p.(f&) -0

Thus (¢,) is an asymptotic momorphism which is clearly a left-inverse
to 1. Composing in the other direction we find

e (x+a(f(1)),f)=(x+p.(f).0)

which we will endeavor to show is homotopic to the identity.
Let us define x-homomorphisms 6, and n, from CB to C[0,1]® B by

0,(f)r)=f(sr)
1 (S)r)=f(s+ (1 =5)r).
(Thus 8,(f) =0, 0,(f) =/ and no(f) =/, n,:(f)=f(1).) Define
@ (x+a(f(1), f)=(x+p.on.(f), 0,())

These are easily seen to define a collection of asymptotically linear, self-
adjoint maps from C, to C,. With 4 and b as above, and using a similar
calculation, one finds

o (a) (b)) — o (ab)ll
< xp,(n,(g))— xa(gU + llp, (n,(f))y —a(S(1)) ]
+lo (D e(nlg)—p.(n,(f2)

which converges to zero uniformly to zero in s. This shows that (¢) is a
homotopy. Since ¢!”=10¢, and " =id, we are done. |
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4. UNSUSPENDING E-THEORY

If, for some A, it happens that
({4, B X ]1]=E(4, B)

for all B, then in particular [[id,]] must have an additive inverse in
[[4, A® A ]]. (More precisely, the class of the map ar—a®e,; has an
inverse.) Remarkably, the converse holds.

For simplicity, we will assume now that A and B are stable. The assump-
tion on A is now that there exists an asymptotic momorphism #: 4 — A
such that

d,®n:A—- M,(A)

is null-homotopic.

LemMa 4.1. If [[id ,1] has an additive inverse then [{ A, B]1] is always
a group.

We will denote the obvious maps (corresponding to inclusion or
evaluation at a point) as

i():CO(R])®C0(R2)®M2"CO(R1)®C(SZ)®M2
it AR Cy(RHOM; > AR C(S*)@ M,
J=Si: A® Cy(R)® Co(R)®@ M3 —» A® Co (RN ® C(S7)® M,
£ AQC(SHQ M, — AR M.
Let p,e C(S?)® M, denote a projection such that

00
tp0=|o || and Led= (L DeKotCis

given the usual identification of K,(C(S?)) with Z> Let B, denote a
x-homomorphism

Bo: CO(RI)—’ Co(R3)®M2

that induces an isomorphism in K. (There are two choices here for the
isomorphism. We will specify which we want later.) Finally, we define

1:A—>ARC(ST)®@ M, and 7, A AR C(S?)

by 7,(a)=a®p, and y,(a)=7n,(a)® 1.
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Proposimion 4.2, If [[1d]] has an additive inverse in {[ A, A1) then
there exists an asymptotic morphism

(B!): A—> S?’AQ@ M,

such that (a) the suspension of B* is homotopic to (id , ® B,) D0 and (b) the
diagram

ARCS)®M,

-

AT"A®C(R2)®M3

commutes up to homotopy.

Proof. The first step is to compute

&y Dy )a)= a
n(a)

for ae A. Our hypothesis implies &y, @y,) is null-homotopic. The
existence of #4 satisfying (b) now follows from Lemma 3.1.
Now suspend this picture. By Lemma 3.1, the map induced by j,

[[A® Co(R"), A® Co(R"Y® Co(R*) ® M,4]]
> [[A® Co(R"), A® C,(R") ® C(S*) ® M,]],

is one-to-one (notice we are dealing with groups). Therefore, we are done
if we can show

Sy, @y,)~Sio(id,® f,) DO
Consider
(iooﬁo)@(idqm@) 1): Co(RY = Co(RHY® C(SH® M,.

This has the same K-theory as Sy, where we define y,: C — C(S?)@ M,
by A+ Ap,. (Here is where we fix our choice of f,.) This implies that
these two *-homomorphisms are stably homotopic because, as is well-
known,

[Co(RY), D® X' ] = K, (D) =Hom(X,(C,(R")), K;(D)).
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Since A is stable, we conclude
Sy, =S8(id ,®7,)
~id , ® Sy,
~id,® ((ig 2 Bo) B (id ¢, ® 1))
=Sie(id,® Bo) ® (id,, ®id (@ 1)

and therefore
S ®7y2)~ Sie(id, ® Bo) D ((id , D) ®id ) ® 1)
~Sio{id,® B,)D0. |

THEOREM 4.3. If A is stable and [[id ;]] has an inverse in [[A, A]]
then

[[4, B]1= E(A, B)

for all stable B. If we identify E(A, B) with [[S?A, S°B]], the isomorphisms
are

S2:[[A4, B]] - [[5°4, S?B]]
and
O :[[S%4, $°B]]1—[[4, B]1]

defined by
O([[e1)=[[ids®a®ids,]1]1-[[¢ ®idy,1]1- [[#*]].

Proof. We first remark that o« here denotes any asymptotic
momorphism from Cy(R?) to X inducing an isomorphism on K, while g+
is defined earlier in this section.

Since C,(R?) is nuclear,

Sae [[SCo(R?), SH 1] = E(Co(R?), K)
=~ KK(Co(R?), X")

induces a KK-equivalence. This implies that Sa is an isomorphism in
of aypan. Thus, even for nonnuclear, but stable, C and D, the map

[[C, $*D11- [[C, SD]]
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induced by composition with id,, ® S, is an isomorphism. A similar remark
applies to fB,. Therefore, the map «, defined by

([[e])=[l1d®@a]]-[[¢]]-[[id® S]],

is an isomorphism. The diagram

[[5°4, 5?B]1 -2 [[4.B]] -5 [[S°4, S°B]]

Js Js :

[[S*4, $°B]]— [[S4, SB]]

IR

commutes, by Proposition 4.2, which implies that @ is surjective.
To finish, we must show that @-S? is the identity. That is, given ¢ in
[[A, B]], we must show

O([[e®idg,, 1) =[[¢]]
Consider the following diagram, which commutes up to homotopy.

A®C(SH® M, ALl > BRCOSH®M,

\ —

AR C,RHYQM, 22284, BeC,(RH® M,
NP2
Iﬂ" id®m®idl d®d®id
A B¢ @id) N B®X®M}

!

BRFX @M,

Here " = A + C# denotes the unitization of " and / is induced by the
inclusion X" — %". We first compute the composition of the outer loop. For
aeA,

(i[d®a,®id)o (¢, ®id®id)-y,(a) = ((d®«,®id) * (¢, ®id ®id)(a ® p)
=(1d®@& ®id)(¢.(a) ®po)
=@, (a)®(&,®@id)(po)
=¢(a)®P,

for a continuous path P, in M,(X) such that

|P?—P, —0 and |P¥—P,—0.
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Moreover, we know that this path represents the class (1, 1) in Ky ().
Therefore, up to homotopy we can replace P, by I®e,, with e,; a minimal
projection in ¥". For ae A,

({d®&)(¢,®id)>y,(a)=(I[d® %) (¢, ®@1d)(n,(a)® 1)
= %('7:(0))@1-

Therefore,
[2(O(p®id))~ (¢ e )P (9@ D (e n®I)~(p®e; ) DO.
This implies that O[[¢ ®id]]=[[¢]] by Proposition 3.1. ]

We thank the referce for pointing out a different way of deriving
Theorem 4.3 from Proposition 3.1. This argument uses the abstract charac-
terizations of KK-theory and E-theory as categories and the Yoneda
Lemma.

5. EXAMPLES

We shall call a C*-algebra homotopy symmetric if [[id,]] has an
additive inverse in [[4, A® A ]]. An easy example is Co(R'). Another
example is the algebra ¢C introduced by Cuntz [9]. Notice that ¢C is
KK-equivalent to C,(R?).

LEmMMa 5.1. If A is homotopy symmetric then A® B is homotopy
symmetric for all B.

Using Theorem 4.3 we get the following corollaries.

COROLLARY 5.2. For all A and B,

E(4,B)=[[¢C®A4, B®X]]
E(SA, B)=[[SA4, B® A]].
PROPOSITION 5.3. If X is a locally compact space whose one point com-

pactification X * has the homotopy type of a finite, connected CW complex
then Cy(X) is homotopy symmetric.

Proof. By [15], [Co(X), Co(X)® A is a group (X kk(X, X)). In
particular, id,y, has an additive inverse. |
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COROLLARY 54. If X is a locally compact space with X+ having the
homotopy type of a finite, connected CW complex then

E(Co(X)®@ A, B)=[[Co(X)® A4, B® A]]

for all C*-algebras A and B.

COROLLARY 5.5. If X is a locally compact space with X* having the
homotopy type of a finite, connected CW complex then

Ko(X)=[[Co(X), X]]
K (X)=Z[[Co(X), Co(0, N® A ]]
=~ Ker([[Cy(X), C(S")® #]]1— [[Co(X), ¥ 1]).

In a forthcoming paper [11], the first named author shows that the
above corollaries are valid for any locally compact, connected, metrizable
space X.

6. DIMENSION-DROP ALGEBRAS

For various purposes, such as finding E-theory with torsion coefficients,
we are interested in the mapping cone of the {unique) unital
*-homomorphism C— M,. We call this the dimension-drop algebra of
order n, denote it by A4,, and notice

A,=1{feCy((0,1], M, | f(1)is scalar}.

Adding a unit, we obtain what is usually called the dimension-drop
interval:

A,={feC([0, 1], M,)| f(0), f(1)are scalar }.
This is the C*-algebra Elliott used to introduce K-torsion to his inductive
limits [16].
We already demonstrated excision for the exact sequence
0—-A,>A4,-C—0. (2)

A less obvious fact is the equality

([4,, B]1=[4,, B] 3)
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that holds for any B. In [17], we showed that A4, is exactly semiprojective.
As a consequence, any *-homomorphism

4 LGl ), B)
" CO([I’OO)s B)

lifts, for some m, to a *-homomorphism

A _’Cb([la (XJ), B)
" Col[1, m), B)

This shows that any asymptotic momorphism from A, to any C*-algebra
is equivalent to a path of x-homomorphisms. The equality above follows.

PROPOSITION 6.1. The (nonunital) dimension-drop C*-algebras A, are
homotopy symmetric.

Proof. We leave it to the reader to check that
id,®---@®@id, :A4,-M,(A,)
is null-homotopic, implying the result. i

COROLLARY 6.2. For all C*-algebras A and B,

E(A,® A, B)=[[4,®4, B® X ]].

7. RESULTS ON Mod-p K-THEORY

The usual definition, due to Cuntz and Schochet [21, 227, of K-theory
with Mod-n coefficients is

K, (A4;Z/n)=K,(A® D),

where D is any C*-algebra that is KK-equivalent to a commutative one
and such that K,(D)Y=12Z/n and K,(D)=0. More generally, one can define
[1, Sect. 23.15] KK with Mod-n coefficients as

KK(A, B;Z/n)=KK(4, B® D)~ KK'(A® D, B).

(In this section, we will stick with nuclear C*-aigebras so that E-theory
and KK-theory coincide.) One may also use such a D but with K,(D)=0
and K,(D)=2Z/n so long as one watches for the degree shift.

One common choice is Cn, the mapping cone for the degree-n map
Cyo(RY) = Cy(R"). One of the consequences of Corollaries 5.4 and 6.2
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is that SCn® X and the stable dimension-drop algebra A,® ) are
isomorphic as objects of &/ sy.. The asymptotic momorphism from SCn to
A, ® A implementing this is interesting in its own right. This is described
in detail in [13].

Using the dimension-drop algebra for introducing torsion coefficients
may have some advantages because it is both homotopy symmetric (which
the Cuntz algebra [8] ¢, ., is not) and semiprojective (which Cn is not).
In particular, we may describe K (A;Z/n) entirely in terms of
x»-homomorphisms, with A4, playing the role of a noncommutative spec-
trum.

COROLLARY 7.1. For B separable,
Ky(B;Z/n)=[A4,, B®X]
Proof. By Theorem 6.2 and (3) we have
Ky(B; Z/n)= KK(C, B; Z/n)
~KK(A,, B)
=[[4, B®X]]
=[4,,B@x]. |

Looking at this from another point of view, this corollary partially
explains why the dimension-drop algebras are such important building
blocks in inductive limits. There is torsion in K,{4,) and the
x-homomorphisms out of 4, can be classified, at least up to homotopy. We
will address related perturbation questions in [147].

Question 7.2. Does there exist a separable, nuclear, homotopy sym-
metric semiprojective C*-algebra D, with K,(D)=2Z/n and K,(D)=0?

We also have a nice statement for K-homology in degree one, although
involving asymptotic momorphisms instead of *-homomorphisms.

COROLLARY 7.3. If X is a locally compact space with X* having the
homotopy type of a finite, connected CW complex then

K(X;Z/n)=K"(Co(X); Z/n) = [[Co(X), 4,@ X ]].

COROLLARY 74. For A and B separable and A nuclear,

KK(A, B;Z/n)=[[4,®A, BQ A" ]].
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