ASSIGNMENT 5. DUE IN CLASS OCT 13, 2017.

1. (a) Let \(\phi : G \rightarrow H \) be a group homomorphism, and suppose that \(G \) is abelian. Prove that \(\phi(G) \) is an abelian subgroup of \(H \). (That is the homomorphic image of an abelian group is an abelian group).
(b) Give an example of a non-trivial (i.e. not mapping everything to the identity) of group homomorphism \(\phi : G \rightarrow H \) of an abelian group \(G \) to a non-abelian group \(H \).
(c) Give an example of a non-trivial (i.e. not mapping everything to the identity) of group homomorphism \(\phi : G \rightarrow H \) of a non-abelian group \(G \) to an abelian group \(H \).

2. Which of the following are normal subgroups ? Justify your answer in each case.
 (a) The subgroup \(4\mathbb{Z} \) of the group \(\mathbb{Z} \).
 (b) The center (refer to a previous assignment) of a group \(G \).
 (c) The subgroup \(\{e, \rho\} \) of the dihedral group \(D_8 \).
 (d) The subgroup \(\{e, \sigma, \sigma^2, \sigma^3\} \) of the dihedral group \(D_8 \).
 (e) The subgroup \(\text{SL}(2, \mathbb{R}) \) of the group \(\text{GL}(2, \mathbb{R}) \).

3. Let \(G \) be a group, and let \(\text{Aut}(G) \) be the set of all isomorphisms \(\phi : G \rightarrow G \) (we call such isomorphisms “automorphisms of \(G \)).
 (a) Prove that \(\text{Aut}(G) \) is a group under the binary operation of composition.
 (b) Now consider the group \(Z_n \) (the cyclic group of order \(n \)). We say that an element \(x \in Z_n \) is a generator of \(Z_n \) if \(o(x) = n \). How many generators does \(Z_{10} \) have ?
 (c) Prove that any automorphism of \(Z_n \) must map a generator to another generator.
 (d) What is the order of the group \(\text{Aut}(Z_{10}) \)?
 (e) Identify the group \(\text{Aut}(Z_{10}) \) (from the list of groups discussed in class).
 (f) Make a guess about the group \(\text{Aut}(Z_n) \) for general \(n \)?
 (g) Justify your guess – i.e. formulate and prove a theorem.