
PROBLEM OF THE WEEK

Solution of Problem No. 4 (Fall 2009 Series)

Problem: Let n ≥ 5 be an integer. Show that n is prime if and only if for every

decomposition n = n1 + n2 + n3 + n4, where 1 ≤ n1 ≤ n2 ≤ n3 ≤ n4 and each ni is an

integer, we have n1n4 6= n2n3.

Solution (by Kun-Chieh Wang, Senior, Purdue University)

1. Suppose n is a prime and we could find n1, n2, n3, n4 ∈ N satisfying n = n1+n2+n3+n4,

1 ≤ n1 ≤ n2 ≤ n3 ≤ n4, and n1n4 = n2n3. Let d1 = gcd(n1, n2), d2 = gcd(n3, n4),

and suppose n1 = d1p1, n2 = d1p2, n3 = d2q1, n4 = d2q2, where p1, p2, q1, q2 ∈ N,

gcd(p1, p2) = 1, gcd(q1, q2) = 1.

n1n4 = n2n3 ⇒ (d1p1)(d2q2) = (d1p2)(d2q1)

⇒ p1q2 = p2q1

gcd(p1, p2) = 1 and gcd(q1, q2) = 1⇒ p1|q1 and q1|p1 ⇒ p1 = q1 ⇒ p2 = q2

n = n1 + n2 + n3 + n4 = d1p1 + d1p2 + d2q1 + d2q2

= d1p1 + d1p2 + d2p1 + d2p2

= (d1 + d2)(p1 + p2)

where d1 + d2 ≥ 1 + 1 = 2, p1 + p2 ≥ 1 + 1 = 2 ⇒ n is a composite number, a

contradiction.

2. Suppose n is a composite number. Let n = ab where a ≤ b, a, b ∈ N and a, b ≥ 2.

Then let n1 = 1, n2 = (a− 1), n3 = (b− 1), n4 = (a− 1)(b− 1). Then we have

1 ≤ n1 ≤ n2 ≤ n3 ≤ n4, n1, n2, n3, n4 ∈ N, and

n1 + n2 + n3 + n4 = (1 + (a− 1))(1 + (b− 1)) = ab = n.
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