Dr. David Goldberg

Dr. David Goldberg Professor of Mathematics, Director of Math Alliance
  • +1 765 49-41919
  • MATH 800
goldberg@purdue.edu

Personal Website

Research Interest(s):
representation theory

Publications listed in MathSciNet

  • [1] David Goldberg. Reducibility for SUn and generic elliptic representations. Canad. J. Math., 58(2):344-361, 2006.
  • [2] David Goldberg and Alan Roche. Hecke algebras and SLn-types. Proc. London Math. Soc. (3), 90(1):87-131, 2005.
  • [3] David Goldberg and Alan Roche. Types in SLn. Proc. London Math. Soc. (3), 85(1):119-138, 2002.
  • [4] David Goldberg and Freydoon Shahidi. On the tempered spectrum of quasi-split classical groups. II. Canad. J. Math., 53(2):244-277, 2001.
  • [5] Solomon Friedberg and David Goldberg. On local coefficients for non-generic representations of some classical groups. Compositio Math., 116(2):133-166, 1999.
  • [6] David Goldberg and Freydoon Shahidi. On the tempered spectrum of quasi-split classical groups. Duke Math. J., 92(2):255-294, 1998.
  • [7] David Goldberg. R-groups and elliptic representations for similitude groups. Math. Ann., 307(4):569-588, 1997.
  • [8] David Goldberg and Rebecca Herb. Some results on the admissible representations of non-connected reductive p-adic groups. Ann. Sci. École Norm. Sup. (4), 30(1):97-146, 1997.
  • [9] David Goldberg. Reducibility for non-connected p-adic groups, with Go of prime index. Canad. J. Math., 47(2):344-363, 1995.
  • [10] David Goldberg. R-groups and elliptic representations for unitary groups. Proc. Amer. Math. Soc., 123(4):1267-1276, 1995.
  • [11] David Goldberg. Reducibility of induced representations for Sp(2n) and SO(n). Amer. J. Math., 116(5):1101-1151, 1994.
  • [12] David Goldberg. R-groups and elliptic representations for SLn. Pacific J. Math., 165(1):77-92, 1994.
  • [13] David Goldberg. Some results on reducibility for unitary groups and local Asai L-functions. J. Reine Angew. Math., 448:65-95, 1994.
  • [14] David Goldberg. Reducibility of generalized principal series representations of U(2,2) via base change. Compositio Math., 86(3):245-264, 1993.
  • [15] David Goldberg. Local Hardy spaces. In Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978), Part 1, Proc. Sympos. Pure Math., XXXV, Part, pages 245-248. Amer. Math. Soc., Providence, R.I., 1979.
  • [16] David Goldberg. A local version of real Hardy spaces. Duke Math. J., 46(1):27-42, 1979.

Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, IN 47907-2067

Phone: (765) 494-1901 - FAX: (765) 494-0548  Contact Us

© 2021 Purdue University | An equal access/equal opportunity university | Copyright Complaints

Trouble with this page? Disability-related accessibility issue? Please contact the College of Science.

Maintained by Science IT