Dr. Daniel Gottlieb

Dr. Daniel Gottlieb Professor Emeritus
      dhg@purdue.edu

      Personal Website

      Research Interest(s):
      algebraic topology, mathematical physics

      Publications listed in MathSciNet

      • [1] Chen-Farng Benjamin and Daniel Henry Gottlieb. Fixed point indices and manifolds with collars. Fixed Point Theory Appl., (Special Issue):Art. ID 87657, 8, 2006.
      • [2] Daniel Henry Gottlieb. Fields of Lorentz transformations on space-time. Topology Appl., 116(1):103-122, 2001. Theory of fixed points and its applications (Sao Paulo, 1999).
      • [3] Daniel Henry Gottlieb. Topology and the non-existence of magnetic monopoles. Cubo Mat. Educ., 2:101-121, 2000.
      • [4] James C. Becker and Daniel Henry Gottlieb. A history of duality in algebraic topology. In History of topology, pages 725-745. North-Holland, Amsterdam, 1999.
      • [5] J. C. Becker and D. H. Gottlieb. Spaces of local vector fields. In Higher homotopy structures in topology and mathematical physics (Poughkeepsie, NY, 1996), volume 227 of Contemp. Math., pages 21-28. Amer. Math. Soc., Providence, RI, 1999.
      • [6] Daniel Henry Gottlieb. Skew symmetric bundle maps. In Homotopy theory via algebraic geometry and group representations (Evanston, IL, 1997), volume 220 of Contemp. Math., pages 117-141. Amer. Math. Soc., Providence, RI, 1998.
      • [7] Daniel Henry Gottlieb. All the way with Gauss-Bonnet and the sociology of mathematics. Amer. Math. Monthly, 103(6):457-469, 1996.
      • [8] Daniel H. Gottlieb and Geetha Samaranayake. The index of discontinuous vector fields. New York J. Math., 1:130-148, electronic, 1994/95.
      • [9] Daniel H. Gottlieb. A gravitational lens need not produce an odd number of images. J. Math. Phys., 35(10):5507-5510, 1994. Topology and physics.
      • [10] Daniel H. Gottlieb and Murad Özaydin. Intersection numbers, transfers, and group actions. Topology Appl., 55(1):87-100, 1994.
      • [11] Daniel H. Gottlieb and Murad Özaydin. Group actions and the singular set. Topology Appl., 52(2):151-159, 1993.
      • [12] James C. Becker and Daniel Henry Gottlieb. Vector fields and transfers. Manuscripta Math., 72(2):111-130, 1991.
      • [13] Daniel Henry Gottlieb. Vector fields and classical theorems of topology. Rend. Sem. Mat. Fis. Milano, 60:193-203 (1993), 1990.
      • [14] Giora Dula and Daniel H. Gottlieb. Splitting off H-spaces and Conner-Raymond splitting theorem. J. Fac. Sci. Univ. Tokyo Sect. IA Math., 37(2):321-334, 1990.
      • [15] Daniel Henry Gottlieb. Zeroes of pullback vector fields and fixed point theory for bodies. In Algebraic topology (Evanston, IL, 1988), volume 96 of Contemp. Math., pages 163-180. Amer. Math. Soc., Providence, RI, 1989.
      • [16] Daniel Henry Gottlieb. Splitting off tori and the evaluation subgroup of the fundamental group. Israel J. Math., 66(1-3):216-222, 1989.
      • [17] Daniel H. Gottlieb. On the index of pullback vector fields. In Differential topology (Siegen, 1987), volume 1350 of Lecture Notes in Math., pages 167-170. Springer, Berlin, 1988.
      • [18] Daniel H. Gottlieb. A de Moivre like formula for fixed point theory. In Fixed point theory and its applications (Berkeley, CA, 1986), volume 72 of Contemp. Math., pages 99-105. Amer. Math. Soc., Providence, RI, 1988.
      • [19] Daniel H. Gottlieb. Topology and the robot arm. Acta Appl. Math., 11(2):117-121, 1988.
      • [20] Daniel H. Gottlieb. Robots and fibre bundles. Bull. Soc. Math. Belg. Sér. A, 38:219-223 (1987), 1986.
      • [21] Daniel H. Gottlieb. On realizing Nakaoka's coincidence point transfer as an S-map. Illinois J. Math., 30(4):689-695, 1986.
      • [22] Daniel Henry Gottlieb. The trace of an action and the degree of a map. Trans. Amer. Math. Soc., 293(1):381-410, 1986.
      • [23] Daniel H. Gottlieb, Kyung B. Lee, and Murad Özaydin. Compact group actions and maps into K(π,1)-spaces. Trans. Amer. Math. Soc., 287(1):419-429, 1985.
      • [24] Daniel H. Gottlieb. Transfers, centers, and group cohomology. Proc. Amer. Math. Soc., 89(1):157-162, 1983.
      • [25] Daniel Henry Gottlieb. The Lefschetz number and Borsuk-Ulam theorems. Pacific J. Math., 103(1):29-37, 1982.
      • [26] Daniel Henry Gottlieb. Poincaré duality and fibrations. Proc. Amer. Math. Soc., 76(1):148-150, 1979.
      • [27] Daniel Henry Gottlieb. Partial transfers. In Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977), I, volume 657 of Lecture Notes in Math., pages 255-266. Springer, Berlin, 1978.
      • [28] Daniel Henry Gottlieb. Lifting actions in fibrations. In Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977), I, volume 657 of Lecture Notes in Math., pages 217-254. Springer, Berlin, 1978.
      • [29] Daniel Henry Gottlieb. Fibering suspensions. Houston J. Math., 4(1):49-65, 1978.
      • [30] Daniel Henry Gottlieb. Fiber bundles with cross-sections and noncollapsing spectral sequences. Illinois J. Math., 21(1):176-177, 1977.
      • [31] Andrew Casson and Daniel Henry Gottlieb. Fibrations with compact fibres. Amer. J. Math., 99(1):159-189, 1977.
      • [32] J. C. Becker and D. H. Gottlieb. Transfer maps for fibrations and duality. Compositio Math., 33(2):107-133, 1976.
      • [33] J. C. Becker, A. Casson, and D. H. Gottlieb. The Lefschetz number and fiber preserving maps. Bull. Amer. Math. Soc., 81:425-427, 1975.
      • [34] J. C. Becker and D. H. Gottlieb. The transfer map and fiber bundles. Topology, 14:1-12, 1975.
      • [35] Daniel Henry Gottlieb. Fibre bundles and the Euler characteristic. J. Differential Geometry, 10:39-48, 1975.
      • [36] Daniel Henry Gottlieb. Witnesses, transgressions, and the evaluation map. Indiana Univ. Math. J., 24:825-836, 1974/75.
      • [37] J. C. Becker and D. H. Gottlieb. Applications of the evaluation map and transfer map theorems. Math. Ann., 211:277-288, 1974.
      • [38] Daniel Henry Gottlieb. The total space of universal fibrations. Pacific J. Math., 46:415-417, 1973.
      • [39] James C. Becker and Daniel Henry Gottlieb. Coverings of fibrations. Compositio Math., 26:119-128, 1973.
      • [40] Daniel H. Gottlieb. The evaluation map and homology. Michigan Math. J., 19:289-297, 1972.
      • [41] Daniel Henry Gottlieb. Applications of bundle map theory. Trans. Amer. Math. Soc., 171:23-50, 1972.
      • [42] Daniel Henry Gottlieb. Homology tangent bundles and universal bundles. Proc. Amer. Math. Soc., 36:246-252, 1972.
      • [43] Daniel H. Gottlieb. Correction to: “On fibre spaces and the evaluation map”. Ann. of Math. (2), 91:640-642, 1970.
      • [44] Daniel Henry Gottlieb. On the construction of G-spaces and applications to homogeneous spaces. Proc. Cambridge Philos. Soc., 68:321-327, 1970.
      • [45] Daniel Henry Gottlieb. Evaluation subgroups of homotopy groups. Amer. J. Math., 91:729-756, 1969.
      • [46] Daniel H. Gottlieb. Covering transformations and universal fibrations. Illinois J. Math., 13:432-437, 1969.
      • [47] Daniel H. Gottlieb. On fibre spaces and the evaluation map. Ann. of Math. (2), 87:42-55, 1968.
      • [48] D. H. Gottlieb. A certain class of incidence matrices. Proc. Amer. Math. Soc., 17:1233-1237, 1966.
      • [49] D. H. Gottlieb. A certain subgroup of the fundamental group. Amer. J. Math., 87:840-856, 1965.
      • [50] Daniel H. Gottlieb. A new invariant of homotopy type and some diverse applications. Bull. Amer. Math. Soc., 71:517-518, 1965.
      • [51] D. H. Gottlieb and N. J. Rothman. Contractibility of certain semigroups. Bull. Amer. Math. Soc., 70:756-757, 1964.
      • [52] Daniel H. Gottlieb. Homotopy and isotopy properties of topological spaces. Canad. J. Math., 16:561-571, 1964.

      Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, IN 47907-2067

      Phone: (765) 494-1901 - FAX: (765) 494-0548  Contact Us

      © 2021 Purdue University | An equal access/equal opportunity university | Copyright Complaints

      Trouble with this page? Disability-related accessibility issue? Please contact the College of Science.

      Maintained by Science IT