Definition 47.
IF there is a a function \(F(x,y)\) that satisfies
\begin{equation*}
\frac{\partial F}{\partial x}=M(x,y)
\qquad {\text and } \qquad
\frac{\partial F}{\partial y}=N(x,y)
\end{equation*}
for all \((x,y)\) in a rectangle \(R\text{,}\)
\begin{gather}
M(x,y)dx+N(x,y)dy=0\tag{βΆ}
\end{gather}
is an exact differential equation and
\begin{equation*}
F(x,y)=C
\end{equation*}
is a solution to (βΆ).
