Skip to main content
Contents
Embed
Dark Mode Prev Up Next
\( \newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\newcommand{\set}[1]{\{{#1}\}}
\newcommand{\gint}[1]{\llbracket #1 \rrbracket}
\newcommand{\mean}[1]{\overline{#1}}
\newcommand{\median}[1]{\widetilde{#1}}
\newcommand{\spc}[1]{\underline{\hspace{#1}}}
\newcommand{\del}{\partial}
\newcommand{\intfact}{e^{\int P(x) \, dx}}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\newcommand{\fillinmath}[1]{\mathchoice{\underline{\displaystyle \phantom{\ \,#1\ \,}}}{\underline{\textstyle \phantom{\ \,#1\ \,}}}{\underline{\scriptstyle \phantom{\ \,#1\ \,}}}{\underline{\scriptscriptstyle\phantom{\ \,#1\ \,}}}}
\)
Handout Lesson 24, Matrices and Linear Systems
This lesson is based on Section 5.1 of your textbook by Edwards, Penney, and Calvis.
Before coming to class today, you were expected to work through the Supplemental Notes on Matrices material found at the top of the module in Brightspace-> Content-> Lecture Materials. These videos and notes contained information about:
component wise operations on matrices
matrix representations for systems of linear equations and row operations for solving systems of linear equations
inverses of square matrices, including an algorithm for calculating the determinant of a
\(2 \times
2\) matrix
Matrix notation for first-order linear systems of differential equations.
A first-order linear system of differential equations can be represented as
\begin{gather*}
\frac{d\mathbf{x}}{dt}=\mathbf{P}(t)\mathbf{x}+\mathbf{f}(t)
\end{gather*}
where
\(\mathbf{P}(t)\) is a matrix and
\(\frac{d\mathbf{x}}{dt}\text{,}\) \(\mathbf{x}\text{,}\) and
\(\mathbf{f}(t)\text{,}\) all of compatible sizes.
NOTE: When writing, it is difficult to use boldface for matrices and vectors. It is standard practice to use capital letters for matrices. For vectors, I will sometimes use the arrow notation
\(\overrightarrow{x}\) when writing to emphasize that I am talking about a vector.
Example 154 . Using matrix notation for systems of DEβs.
Rewrite the first-order linear system of differential equations using matrix notation. Then find the associated homogeneous equation for the system.
\begin{align}
\begin{cases} x_1' \amp = e^tx_1+\cos(t)x_2+t^2+1 \\ x_2' \amp =
\sin(t)x_1+7x_2+5t \\ \end{cases}\tag{#}
\end{align}
Principle of Superposition.
Theorem 155 .
Let
\(\mathbf{x_1}, \mathbf{x_2}, \dots, \mathbf{x_n}\) be solutions of the homogeneous system of linear differential equations
\begin{gather}
\frac{d\mathbf{x}}{dt}=\mathbf{P}(t)\mathbf{x}\tag{βΆ}
\end{gather}
on the open interval
\(I\text{.}\) Then for constants
\(c_1, c_2, \dots, c_n\text{,}\)
\begin{gather*}
\mathbf{x}(t)=c_1\mathbf{x_1}(t)+c_2\mathbf{x_2}(t)+ \dots +
c_n\mathbf{x_n}(t)
\end{gather*}
is also a solutions to
(βΆ) .
Linear independence of vector functions and the Wronskian.
Definition 156 .
\(\mathbf{x_1}(t), \mathbf{x_2}(t), \dots, \mathbf{x_n}(t)\) are
linearly dependent if there are constants
\(c_1, c_2, \dots, c_n\) that are not all zero such that
\begin{gather}
c_1\mathbf{x_1}(t)+c_2\mathbf{x_2}(t)+ \dots +
c_n\mathbf{x_n}(t) = \mathbf{0}\tag{β }
\end{gather}
If the only set of constants that satisfy
(β ) is
\(c_1 = c_2 = \dots = c_n=0\text{,}\) then the vector valued functions
\(\mathbf{x_1}(t), \mathbf{x_2}(t), \dots,
\mathbf{x_n}(t)\) are
linearly independent
Definition 157 .
Let
\(\mathbf{x_1}(t), \mathbf{x_2}(t), \dots,
\mathbf{x_n}(t)\) be
\(n\) vector valued functions, each with
\(n\) components, so that
\begin{gather*}
\mathbf{x_j}(t)=\left[ \begin{array}{c} x_{1,j}(t) \\
x_{2,j}(t) \\ \vdots \\ x_{n,j}(t) \end{array} \right]
\end{gather*}
(
NOTE: In this notation, the second index indicates the number of the vector valued function.)
Then the
Wronskian of
\(\mathbf{x_1},
\mathbf{x_2}, \dots, \mathbf{x_n}\) is
\begin{align*}
W(t) \amp = W(\mathbf{x_1}, \mathbf{x_2}, \dots \mathbf{x_n})\\
\amp = \det\bigg(\bigg[ \mathbf{x_1}(t) \quad \mathbf{x_2}(t) \quad
\dots \quad \mathbf{x_n}(t) \bigg] \bigg)\\
\amp = \left| \begin{array}{cccc} x_{1,1}(t) \amp x_{1,2}(t)
\amp \dots \amp x_{1,n}(t) \\ x_{2,1}(t) \amp x_{2,2}(t) \amp
\dots \amp x_{2,n}(t) \\ \vdots \amp \vdots \amp \ddots \amp
\vdots \\ x_{n,1}(t) \amp x_{n,2}(t) \amp \dots \amp
x_{n,n}(t) \end{array} \right|
\end{align*}
Theorem 158 . The Wronskian and linear independence.
Let
\(\mathbf{x_1}, \mathbf{x_2}, \dots, \mathbf{x_n}\) be
\(n\) solutions of the homogeneous system of linear differential equations
\begin{gather}
\frac{d\mathbf{x}}{dt}=\mathbf{P}(t)\mathbf{x}\tag{#}
\end{gather}
where
\(\mathbf{P}(t)\) is an
\(n \times n\) matrix. Suppose
\(\mathbf{P}(t)\) is continuous on the open interval
\(I\text{.}\)
If
\(\mathbf{x_1}, \mathbf{x_2}, \dots, \mathbf{x_n}\) are linearly dependent on
\(I\) then
\begin{gather*}
W(\mathbf{x_1}, \mathbf{x_2}, \dots \mathbf{x_n})(t)=0
\end{gather*}
for all
\(t \in I\text{.}\)
If
\(\mathbf{x_1}, \mathbf{x_2}, \dots, \mathbf{x_n}\) are linearly independent on
\(I\) then
\begin{gather*}
W(\mathbf{x_1}, \mathbf{x_2}, \dots \mathbf{x_n})(t)\neq 0
\end{gather*}
for all
\(t \in I\text{.}\)
Example 159 . The Wronskian, general solutions, and and IVP.
(Based on number 25 from Section 5.1 of your textbook by Edwards, et.al.)
\begin{gather*}
\mathbf{x_1}(t)=\left[ \begin{array}{c} 3e^{2t} \\ 2e^{2t}
\end{array} \right] \qquad \text{ and } \qquad
\mathbf{x_2}(t)=\left[ \begin{array}{c} e^{-5t} \\ 3e^{-5t}
\end{array} \right]
\end{gather*}
\begin{align}
\mathbf{x}'=\left[ \begin{array}{cc} 4 \amp -3 \\ 6 \amp -7
\end{array} \right] \mathbf{x}\tag{βΆβΆ}
\end{align}
Show that
\(\mathbf{x_1}\) and
\(\mathbf{x_2}\) are solutions to
(βΆβΆ) .
Use the Wronskian to show that
\(\mathbf{x_1}\) and
\(\mathbf{x_2}\) are linearly independent.
Find the particular solution of
(βΆβΆ) that satisfies the initial condition
\(\mathbf{x}(0)=\left[\begin{array}{c} 8 \\ 0 \end{array}\right]\)
Solutions of nonhomogeneous linear systems of differential equations.
Theorem 160 .
Let
\(\mathbf{P}(t)\) be an
\(n \times n\) matrix and let
\(\mathbf{x_p}(t)\) be a particular solution of
\begin{gather}
\frac{d\mathbf{x}}{dt}=\mathbf{P}(t)\mathbf{x}+\mathbf{f}(t)\tag{#}
\end{gather}
on and open interval
\(I\) on which
\(\mathbf{P}(t)\) and
\(\mathbf{f}(t)\) are continuous. Let
\(\mathbf{x_1},
\mathbf{x_2}, \dots, \mathbf{x_n}\) be linearly independent solutions of the associated homogeneous system of linear differential equations on
\(I\text{.}\) If
\(\mathbf{x}(t)\) is
any solution of
(#) , then there are numbers
\(c_1, c_2, \dots, c_n\) such that
\begin{gather*}
\mathbf{x}(t)=\mathbf{x_p}(t)+c_1\mathbf{x_1}(t)+c_2\mathbf{x_2}(t)+
\dots + c_n\mathbf{x_n}(t)
\end{gather*}