0109  Lesson 1 
12.1  12.3 Review

 
12.4 Review Covered by TAs

0111  Lesson 2 
12.5 Lines and Planes in Space

0113  Lesson 3 
12.6 Surfaces in 3 Dimensions

0118  Lesson 4 
Example Problems: 3D Surfaces

0120  Lesson 5 
13.1 Vector Functions

0123  Lesson 6 
13.2 Derivatives and Integrals of Vector Functions

0125  Lesson 7 
13.3 Arclength and Curvature

0127  Lesson 8 
13.4 Velocity and Acceleration

0130  Lesson 9 
14.1 Functions of Several Variables

0201  Lesson 10 
14.2 Limits and Continuity

0203  Lesson 11 
14.3 Partial Derivatives

0206  Lesson 12 
14.4. Tangent Planes and Approximations

0208  Lesson 13 
14.5. Chain Rule

0210  Lesson 14 
14.6. Directional Derivatives

0213  Lesson 15 
14.6. Directional Derivatives (cont')

0215  Lesson 16 
14.7. Maximum and Minimum Values

0217  Lesson 17 
14.7. Maximum and Minimum Values (cont')

0220  Review 
Review Problems for Exam 1

0224  Lesson 18 
14.8. Lagrange Multipliers

0227  Lesson 19 
15.12 Double Integrals over Rectangles

0301  Lesson 20 
15.3 Iterated Integrals

0303  Lesson 21 
15.4 Double Integrals in Polar Coords

0306  Lesson 22 
15.6 Density and Mass

0308  Lesson 23 
15.7 Triple Integrals

0310  Lesson 24 
15.8 Triple Integrals in Cylind. Coords

0320  Lesson 25 
15.9 Triple Integrals in Spherical Coords

0322  Lesson 26 
16.1 Vector Fields

0324  Lesson 27 
16.2 Line Integrals

0327  Lesson 28 
16.2 Line Integrals (cont')

0329  Lesson 29 
16.3 Fundamental Theorem for Line Integrals

0331  Lesson 30 
16.4 Green's Theorem
