XIANGXIONG
ZHANG
Preprints and publications:
Books:
- 55. A. Anshika, J. Li, D. Ghosh and X. Zhang, A
Three-Operator Splitting Scheme Derived from Three-Block
ADMM, to appear in MOPTA 24 special issue of Optimization
and Engineering. PDF
arXiv
code
- 54. C. Liu, J. Hu, W. Taitano and X. Zhang, An
optimization-based positivity-preserving limiter in
semi-implicit discontinuous Galerkin schemes solving
Fokker–Planck equations, Computers and Mathematics
with Applications, Vol. 192, 15 (2025), pp. 54-71. DOI
PDF arXiv
- 53. C. Liu. Z. Sun and X. Zhang, A bound-preserving
Runge--Kutta discontinuous Galerkin method with compact
stencils for hyperbolic conservation laws, Journal of
Computational Physics, Vol 537 (2025), 114071. arXiv
- 52. S. Zheng, W. Huang, B. Vandereycken and X. Zhang,
Riemannian optimization using three different metrics for
Hermitian PSD fixed-rank constraints, Computational
Optimization and Applications (2025)
Volume 91, pages 1135–1184, DOI.
PDF.
An extended version with more details is on arXiv.
- 51. W. Hao, S. Lee and X. Zhang, An Efficient
Quasi-Newton Method with Tensor Product Implementation for
Solving Quasi-Linear Elliptic Equations and Systems,
Journal of Scientific Computing, (2025) 103:89. DOI
arXiv
- 50. Y. Chen, D. Xiu and X. Zhang, On enforcing
non-negativity in polynomial approximations in high
dimensions, SIAM Journal on Scientific Computing, 47,
no. 2 (2025), A866-A888. DOI PDF arXiv
- 49. B. Ren, B.S. Wang, X. Zhang and Z. Gao, Positivity
and Bound Preserving Well-Balanced Compact Finite
Difference Scheme for Ripa and Pollutant Transport
Systems, Computers and Mathematics with Applications,
Vol. 176, 15 (2024), pp. 545-563. PDF
- 48. Z. Chen, J. Lu, Y. Lu and X. Zhang, Fully
discretized Sobolev gradient flow for the Gross-Pitaevskii
eigenvalue problem, Mathematics of Computation 94
(2025), 2723-2760. DOI
arXiv
-
- 47. C. Liu, G. Buzzard and X. Zhang, An optimization
based limiter for enforcing positivity in a semi-implicit
discontinuous Galerkin scheme for compressible
Navier–Stokes equations, Journal of
Computational Physics, 519 (2024), pp. 113440.
PDF arXiv
- 46. H. Li and X. Zhang, A monotone Q1 finite element
method for anisotropic elliptic equations, the special
issue in honor of Prof. Chi-Wang Shu’s 65th birthday in Beijing
Journal of Pure and Applied Mathematics, Vol. 2, no.
1 (2025), pp. 183–217. DOI
PDF
arXiv
- 45. X. Liu, J. Shen and X. Zhang, A simple GPU
implementation of spectral-element methods for solving 3D
Poisson type equations on rectangular domains and its
applications, Communications in Computational Physics,
Vol. 36, no. 5 (2024), pp. 1157–1185. DOI
PDF arXiv
Demonstration
for how to run the code
- 44. S. Zheng, H. Yang, and X. Zhang, On the
convergence of orthogonalization-free conjugate gradient
method for extreme eigenvalues of Hermitian matrices: a
Riemannian optimization interpretation. on the special Computational
Methods and Models in Deep Learning for Inverse
Problems, Journal of Computational and Applied
Mathematics 451 (2024), pp. 116053. PDF
- 43. L. Cross and X. Zhang, On the monotonicity of Q3
spectral element method for Laplacian, Annals of
Applied Mathematics 40 (2) (2024), pp. 161–190. PDF doi:
10.4208/aam.OA-2024-0007
- 42. C. Liu, B. Riviere, J. Shen and X. Zhang, A simple
and efficient convex optimization based bound-preserving
high order accurate limiter for
Cahn--Hilliard--Navier--Stokes system, SIAM Journal on
Scientific Computing, 46, no. 3 (2024): A1923-A1948.
PDF
arXiv
- 41. M. Dai, M. Hoeller, Q. Peng, and X. Zhang,
Kolmogorov's dissipation number and determining wavenumber
for dyadic models. Nonlinearity 37, no. 2 (2024): 025015.
DOI
arXiv
- 40. Z. Chen, J. Lu, Y. Lu and X. Zhang, On the
convergence of Sobolev gradient flow for the
Gross-Pitaevskii eigenvalue problem. SIAM Journal on
Numerical Analysis 62 (2024), pp. 667–691. arXiv
-
- 39. L. Cross and X. Zhang, On the monotonicity of Q2
spectral element method for Laplacian on quasi-uniform
rectangular meshes, Communications in Computational
Physics, Vol. 35, No. 1, pp. 160-180, 2024. PDF
doi:10.4208/cicp.OA-2023-0206
- 38. C. Liu, Y. Gao and X. Zhang, Structure preserving
schemes for Fokker-Planck equations of irreversible
processes, Journal of Scientific Computing
98(1):4, 2024. arXiv
- 37. C. Liu and X. Zhang, A positivity-preserving
implicit-explicit scheme with high order polynomial basis
for compressible Navier–Stokes equations, Journal
of Computational Physics 493:112496, 2023. PDF
- 36. M. Dai, B. Vyas and X. Zhang, 1D Model for the 3D
Magnetohydrodynamics. Journal of Nonlinear Science,
33, Article number: 87 (2023). DOI
PDF
- 35. X. Liu, J. Shen and X. Zhang, An efficient and
robust SAV based algorithm for discrete gradient
systems arising from optimizations, SIAM Journal on
Scientific Computing, Vol. 45, No. 5, pp. A2304--A2324,
2023. PDF
- 34. B. Ren, Z. Gao, Y. Gu, S. Xie, and X. Zhang, A
positivity-preserving and well-balanced high order compact
finite difference scheme for shallow water equations, Communications
in Computational Physics 35 (2024), pp. 524-552. PDF
- 33. H. Li and X. Zhang, A high order accurate
bound-preserving compact finite difference scheme for
two-dimensional incompressible flow, Communications on
Applied Mathematics and Computation, Volume 6, pages
113–141, (2024). Focused Issue in Memory of Prof.
Ching-Shan Chou. PDF https://doi.org/10.1007/s42967-022-00227-9
- 32. C. Fan, X. Zhang and J. Qiu, Positivity-preserving
high order finite difference WENO schemes for the
compressible Navier-Stokes equations, Journal of
Computational Physics 467 (2022): 111446. PDF
- 31. J. Hu and X. Zhang, Positivity-preserving and
energy-dissipative finite difference schemes for the
Fokker-Planck and Keller-Segel equations, IMA Journal
of Numerical Analysis 43 (2022), pp. 1450–1484. PDF
- 30. J. Shen and X. Zhang, Discrete Maximum principle of
a high order finite difference scheme for a generalized
Allen-Cahn equation, Communications in Mathematical
Sciences, Volume 20 (2022) Number 5, pp.1409-1436. PDF
- 29. H. Li, D. Appelö and X. Zhang, Accuracy of spectral
element method for wave, parabolic and Schrödinger
equations, SIAM Journal
on Numerical Analysis 60(1):339–363, 2022. PDF See
Section 2.8 in
Hao Li's thesis for
detailed discussion of Neumann b.c..
- 28. C. Fan, X. Zhang and J. Qiu, Positivity-preserving
high order finite volume hybrid Hermite WENO schemes for
compressible Navier-Stokes equations, Journal of Computational
Physics, Volume 445, 2021, 110596. PDF
- 27. M. Li, Y. Cheng, J. Shen and X. Zhang, A
Bound-Preserving High Order Scheme for Variable Density
Incompressible Navier-Stokes Equations, Journal of Computational
Physics 425 (2021): 109906. PDF
- 26. H. Li and X. Zhang, On the monotonicity and
discrete maximum principle of the finite difference
implementation of C^0-Q^2 finite element method, Numerische
Mathematik 145, 437–472 (2020). PDF
- 25. H. Li and X. Zhang, Superconvergence of high order
finite difference schemes based on variational formulation
for elliptic equations, Journal of Scientific
Computing 82, 36 (2020). PDF
See Section 2.8 in Hao Li's
thesis for detailed discussion of Neumann b.c..
- 24. H. Li and X. Zhang, Superconvergence of C^0-Q^k
finite element method for elliptic equations with
approximated coefficients,
Journal of
Scientific Computing 82, 1 (2020). PDF
- 23. H. Li, S. Xie and X. Zhang, A high order accurate
bound-preserving compact finite difference scheme for
scalar convection diffusion equations, SIAM Journal on Numerical
Analysis, 2018, 56(6), 3308-3345. PDF
- 22. S. Srinivasan, J. Poggie and X. Zhang, A
positivity-preserving high order discontinuous Galerkin
scheme for convection-diffusion equations, Journal of Computational
Physics, Vol 366, 2018, Pages 120-143. PDF
- 21. J. Hu, R. Shu and X. Zhang,
Asymptotic-preserving and positivity-preserving
implicit-explicit schemes for the stiff BGK equation, SIAM Journal on Numerical
Analysis, 2018, 56(2), 942–973. PDF
- 20. J. Hu and X. Zhang, On a class of
implicit-explicit Runge Kutta schemes for stiff kinetic
equations preserving the Navier-Stokes limit, Journal
of Scientific Computing, (2017) 73: 797-818. PDF
- 19. W. Huang, K. Gallivan and X. Zhang, Solving
PhaseLift by low-rank Riemannian optimization methods for
complex semidefinite constraints. SIAM Journal on
Scientific Computing, 39-5 (2017), . CODE.
PDF
- 18. X. Zhang, On positivity-preserving high order
discontinuous Galerkin schemes for compressible
Navier-Stokes equations, Journal of Computational
Physics, 328 (2017):
301–343. DOI. PDF
- 17. X. Zhang, A curved boundary treatment for
discontinuous Galerkin schemes solving time dependent
problems, Journal of Computational Physics,
308 (2016): 153-170. DOI.
PDF.
- 16. X. Cai, X. Zhang and J. Qiu, Positivity-preserving
high order finite volume HWENO schemes for compressible
Euler equations, Journal of Scientific Computing,
(2016) 68: 464. DOI. PDF.
- 15. X. Zhang and S. Tan, A simple and accurate
discontinuous Galerkin scheme for modeling scalar-wave
propagation in media with curved interfaces, GEOPHYSICS
Mar 2015, Vol. 80, No. 2, pp. T83-T89. DOI.
PDF.
- 14. L. Demanet and X. Zhang, Eventual linear convergence
of the Douglas Rachford iteration for basis pursuit, Mathematics
of Computation 85 (2016), 209-238. DOI.
PDF.
-
- 13. Y. Xing and X. Zhang, Positivity-preserving
well-balanced discontinuous Galerkin methods for the
shallow water equations on unstructured triangular meshes,
Journal of Scientific Computing, v57 (2013),
pp. 19-41. DOI.
PDF.
- 12. Y. Zhang, X. Zhang and C.-W. Shu,
Maximum-principle-satisfying second order discontinuous
Galerkin schemes for convection-diffusion equations on
triangular meshes, Journal of Computational Physics,
v234 (2013), pp. 295-316. DOI.
PDF.
- 11. X. Zhang, Y.-Y. Liu and C.-W. Shu,
Maximum-principle-satisfying high order finite volume WENO
schemes for convection-diffusion equations, SIAM
Journal on Scientific Computing, v34 (2012),
pp.A627-A658. DOI.
PDF.
- 10. X. Zhang and C.-W. Shu, Positivity-preserving high
order finite difference WENO schemes for compressible
Euler equations, Journal of Computational Physics,
v231 (2012), pp.2245-2258. DOI.
PDF.
- 9. X. Zhang and C.-W. Shu, A minimum entropy principle
of high order schemes for gas dynamics equations, Numerische
Mathematik, (2012) 121:545-563. DOI.
PDF.
- 8. C. Wang, X. Zhang, C.-W. Shu and J. Ning, Robust high
order discontinuous Galerkin schemes for two-dimensional
gaseous detonations, Journal of Computational
Physics, v231 (2012), pp.653-665. DOI.
PDF.
- 7. X. Zhang and C.-W. Shu, Maximum-principle-satisfying
and positivity-preserving high order schemes for
conservation laws: Survey and new developments, Proceedings
of the Royal Society A: Mathematical, Physical and
Engineering Sciences, v467 (2011), pp.2752-2776.
DOI.
PDF. See
Appendix C in this
paper for a correction to the proof of Lemma
1.
- 6. X. Zhang and C.-W. Shu, Positivity-preserving high
order discontinuous Galerkin schemes for compressible
Euler equations with source terms, Journal of
Computational Physics, v230 (2011), pp.1238-1248.
DOI.
PDF.
- 5. X. Zhang, Y. Xia and C.-W. Shu,
Maximum-principle-satisfying and positivity-preserving
high order discontinuous Galerkin schemes for conservation
laws on triangular meshes, Journal of Scientific
Computing, v50 (2012), pp.29-62. DOI.
PDF.
-
- 4. Y. Xing, X. Zhang and C.-W. Shu, Positivity
preserving high order well balanced discontinuous Galerkin
methods for the shallow water equations, Advances
in Water Resources, v33 (2010), pp.1476-1493. DOI.
PDF.
- 3. X. Zhang and C.-W. Shu, On positivity preserving high
order discontinuous Galerkin schemes for compressible
Euler equations on rectangular meshes, Journal of
Computational Physics, v229 (2010), pp.8918-8934.
DOI.
PDF.
- 2. X. Zhang and C.-W. Shu, On
maximum-principle-satisfying high order schemes for scalar
conservation laws, Journal of Computational Physics,
v229 (2010), pp. 3091-3120. DOI.
PDF.
See Appendix C in this paper for a
correction to the proof of Lemma 2.4.
- 1. X. Zhang and C.-W. Shu, A genuinely high order total
variation diminishing scheme for one-dimensional scalar
conservation laws, SIAM Journal on Numerical
Analysis, Volume 48, Issue 2 (2010), pp. 772-795.
DOI.
PDF.
- 5. X. Zhang, Recent Progress on Qk Spectral Element
Method: Accuracy, Monotonicity and Applications, In: Chun,
S., Jung, JH., Park, EJ., Shen, J. (eds) Spectral and
High-Order Methods for Partial Differential Equations
ICOSAHOM 2023. ICOSAHOM 2023. Lecture Notes in
Computational Science and Engineering, vol 142. Springer,
Cham. (2025), pp 113-137. PDF
- DOI
- 4. Z. Xu and X. Zhang, Bound-preserving high order
schemes, Volume 18, Handbook of Numerical Methods for
Hyperbolic Problems: Applied and Modern Issues, R. Abgrall
and C.-W. Shu, Editors, North-Holland, Elsevier,
Amsterdam, 2017, pp. 81-102. PDF
- 3. Wen Huang, Kyle A. Gallivan, Xiangxiong Zhang,
Solving PhaseLift by Low-rank Riemannian Optimization
Methods, The International Conference on Computational
Science 2016, ICCS 2016, 6-8 June 2016, San Diego,
California, USA. Procedia Computer Science, Volume 80,
2016, Pages 1125-1134, ISSN 1877-0509, DOI
- 2. X. Zhang and S. Tan, A simple and accurate
discontinuous Galerkin scheme for modeling scalar-wave
propagation in media with curved interfaces, in Proc.
SEG annual meeting, Denver, October 2014. DOI
- 1. M. Leinonen, R. J. Hewett, X. Zhang, L. Ying, L.
Demanet, High-dimensional wave atoms and compression
of seismic datasets, in Proc. SEG annual meeting,
Houston, September 2013. DOI.
PDF.
- 1. T. Yu, S. Zheng, J. Lu, G. Menon and X. Zhang,
Riemannian Langevin Monte Carlo schemes for sampling
PSD matrices with fixed rank. PDF
arXiv
- 2. E. Gil Torres, M. Jacobs, and X. Zhang, Asymptotic
Linear Convergence of ADMM for Isotropic TV Norm
Compressed Sensing, PDF arXiv
- 3. C. Liu, D. Milesis, C.-W. Shu, and X. Zhang,
Efficient optimization-based invariant-domain-preserving
limiters in solving gas dynamics equations, PDF arXiv