Xiangxiong Zhang

Research
Profiles
Quick Navigation
Books
Preprints
  • 3. C. Liu, D. Milesis, C.-W. Shu, and X. Zhang, Efficient optimization-based invariant-domain-preserving limiters in solving gas dynamics equations. PDF arXiv
  • 2. E. Gil Torres, M. Jacobs, and X. Zhang, Asymptotic Linear Convergence of ADMM for Isotropic TV Norm Compressed Sensing. PDF arXiv
  • 1. T. Yu, S. Zheng, J. Lu, G. Menon and X. Zhang, Riemannian Langevin Monte Carlo schemes for sampling PSD matrices with fixed rank. PDF arXiv
Publications in Refereed Journals
  • 56. K. Wu, X. Zhang and C.-W. Shu, High Order Numerical Methods Preserving Invariant Domain for Hyperbolic and Related Systems, to appear in SIAM Review. PDF arXiv
  • 55. A. Anshika, J. Li, D. Ghosh and X. Zhang, A Three-Operator Splitting Scheme Derived from Three-Block ADMM, MOPTA 24 special issue of Optimization and Engineering (2025). DOI PDF arXiv Code
  • 54. C. Liu, J. Hu, W. Taitano and X. Zhang, An optimization-based positivity-preserving limiter in semi-implicit discontinuous Galerkin schemes solving Fokker–Planck equations, Computers and Mathematics with Applications, Vol. 192, 15 (2025), pp. 54–71. DOI PDF arXiv
  • 53. C. Liu, Z. Sun and X. Zhang, A bound-preserving Runge–Kutta discontinuous Galerkin method with compact stencils for hyperbolic conservation laws, Journal of Computational Physics, Vol 537 (2025), 114071. arXiv
  • 52. S. Zheng, W. Huang, B. Vandereycken and X. Zhang, Riemannian optimization using three different metrics for Hermitian PSD fixed-rank constraints, Computational Optimization and Applications (2025), Volume 91, pages 1135–1184. DOI PDF arXiv
  • 51. W. Hao, S. Lee and X. Zhang, An Efficient Quasi-Newton Method with Tensor Product Implementation for Solving Quasi-Linear Elliptic Equations and Systems, Journal of Scientific Computing, (2025) 103:89. DOI arXiv
  • 50. Y. Chen, D. Xiu and X. Zhang, On enforcing non-negativity in polynomial approximations in high dimensions, SIAM Journal on Scientific Computing, 47, no. 2 (2025), A866–A888. DOI PDF arXiv
  • 49. B. Ren, B.S. Wang, X. Zhang and Z. Gao, Positivity and Bound Preserving Well-Balanced Compact Finite Difference Scheme for Ripa and Pollutant Transport Systems, Computers and Mathematics with Applications, Vol. 176, 15 (2024), pp. 545–563. PDF
  • 48. Z. Chen, J. Lu, Y. Lu and X. Zhang, Fully discretized Sobolev gradient flow for the Gross-Pitaevskii eigenvalue problem, Mathematics of Computation 94 (2025), 2723–2760. DOI arXiv
  • 47. C. Liu, G. Buzzard and X. Zhang, An optimization based limiter for enforcing positivity in a semi-implicit discontinuous Galerkin scheme for compressible Navier–Stokes equations, Journal of Computational Physics, 519 (2024), pp. 113440. PDF arXiv
  • 46. H. Li and X. Zhang, A monotone Q1 finite element method for anisotropic elliptic equations, the special issue in honor of Prof. Chi-Wang Shu's 65th birthday in Beijing Journal of Pure and Applied Mathematics, Vol. 2, no. 1 (2025), pp. 183–217. DOI PDF arXiv
  • 45. X. Liu, J. Shen and X. Zhang, A simple GPU implementation of spectral-element methods for solving 3D Poisson type equations on rectangular domains and its applications, Communications in Computational Physics, Vol. 36, no. 5 (2024), pp. 1157–1185. DOI PDF arXiv Demo
  • 44. S. Zheng, H. Yang, and X. Zhang, On the convergence of orthogonalization-free conjugate gradient method for extreme eigenvalues of Hermitian matrices: a Riemannian optimization interpretation, on the special issue Computational Methods and Models in Deep Learning for Inverse Problems, Journal of Computational and Applied Mathematics 451 (2024), pp. 116053. PDF
  • 43. L. Cross and X. Zhang, On the monotonicity of Q3 spectral element method for Laplacian, Annals of Applied Mathematics 40 (2) (2024), pp. 161–190. PDF
  • 42. C. Liu, B. Riviere, J. Shen and X. Zhang, A simple and efficient convex optimization based bound-preserving high order accurate limiter for Cahn–Hilliard–Navier–Stokes system, SIAM Journal on Scientific Computing, 46, no. 3 (2024): A1923–A1948. PDF arXiv
  • 41. M. Dai, M. Hoeller, Q. Peng, and X. Zhang, Kolmogorov's dissipation number and determining wavenumber for dyadic models, Nonlinearity 37, no. 2 (2024): 025015. DOI arXiv
  • 40. Z. Chen, J. Lu, Y. Lu and X. Zhang, On the convergence of Sobolev gradient flow for the Gross-Pitaevskii eigenvalue problem, SIAM Journal on Numerical Analysis 62 (2024), pp. 667–691. arXiv
  • 39. L. Cross and X. Zhang, On the monotonicity of Q2 spectral element method for Laplacian on quasi-uniform rectangular meshes, Communications in Computational Physics, Vol. 35, No. 1, pp. 160–180, 2024. PDF
  • 38. C. Liu, Y. Gao and X. Zhang, Structure preserving schemes for Fokker-Planck equations of irreversible processes, Journal of Scientific Computing 98(1):4, 2024. arXiv
  • 37. C. Liu and X. Zhang, A positivity-preserving implicit-explicit scheme with high order polynomial basis for compressible Navier–Stokes equations, Journal of Computational Physics 493:112496, 2023. PDF
  • 36. M. Dai, B. Vyas and X. Zhang, 1D Model for the 3D Magnetohydrodynamics, Journal of Nonlinear Science, 33, Article number: 87 (2023). DOI PDF
  • 35. X. Liu, J. Shen and X. Zhang, An efficient and robust SAV based algorithm for discrete gradient systems arising from optimizations, SIAM Journal on Scientific Computing, Vol. 45, No. 5, pp. A2304–A2324, 2023. PDF
  • 34. B. Ren, Z. Gao, Y. Gu, S. Xie, and X. Zhang, A positivity-preserving and well-balanced high order compact finite difference scheme for shallow water equations, Communications in Computational Physics 35 (2024), pp. 524–552. PDF
  • 33. H. Li and X. Zhang, A high order accurate bound-preserving compact finite difference scheme for two-dimensional incompressible flow, Communications on Applied Mathematics and Computation, Volume 6, pages 113–141, (2024). Focused Issue in Memory of Prof. Ching-Shan Chou. PDF
  • 32. C. Fan, X. Zhang and J. Qiu, Positivity-preserving high order finite difference WENO schemes for the compressible Navier-Stokes equations, Journal of Computational Physics 467 (2022): 111446. PDF
  • 31. J. Hu and X. Zhang, Positivity-preserving and energy-dissipative finite difference schemes for the Fokker-Planck and Keller-Segel equations, IMA Journal of Numerical Analysis 43 (2022), pp. 1450–1484. PDF
  • 30. J. Shen and X. Zhang, Discrete Maximum principle of a high order finite difference scheme for a generalized Allen-Cahn equation, Communications in Mathematical Sciences, Volume 20 (2022) Number 5, pp. 1409–1436. PDF
  • 29. H. Li, D. Appelö and X. Zhang, Accuracy of spectral element method for wave, parabolic and Schrödinger equations, SIAM Journal on Numerical Analysis 60(1):339–363, 2022. PDF See Section 2.8 in Hao Li's thesis for detailed discussion of Neumann b.c.
  • 28. C. Fan, X. Zhang and J. Qiu, Positivity-preserving high order finite volume hybrid Hermite WENO schemes for compressible Navier-Stokes equations, Journal of Computational Physics, Volume 445, 2021, 110596. PDF
  • 27. M. Li, Y. Cheng, J. Shen and X. Zhang, A Bound-Preserving High Order Scheme for Variable Density Incompressible Navier-Stokes Equations, Journal of Computational Physics 425 (2021): 109906. PDF
  • 26. H. Li and X. Zhang, On the monotonicity and discrete maximum principle of the finite difference implementation of C0-Q2 finite element method, Numerische Mathematik 145, 437–472 (2020). PDF
  • 25. H. Li and X. Zhang, Superconvergence of high order finite difference schemes based on variational formulation for elliptic equations, Journal of Scientific Computing 82, 36 (2020). PDF See Section 2.8 in Hao Li's thesis for detailed discussion of Neumann b.c.
  • 24. H. Li and X. Zhang, Superconvergence of C0-Qk finite element method for elliptic equations with approximated coefficients, Journal of Scientific Computing 82, 1 (2020). PDF
  • 23. H. Li, S. Xie and X. Zhang, A high order accurate bound-preserving compact finite difference scheme for scalar convection diffusion equations, SIAM Journal on Numerical Analysis, 2018, 56(6), 3308–3345. PDF
  • 22. S. Srinivasan, J. Poggie and X. Zhang, A positivity-preserving high order discontinuous Galerkin scheme for convection-diffusion equations, Journal of Computational Physics, Vol 366, 2018, Pages 120–143. PDF
  • 21. J. Hu, R. Shu and X. Zhang, Asymptotic-preserving and positivity-preserving implicit-explicit schemes for the stiff BGK equation, SIAM Journal on Numerical Analysis, 2018, 56(2), 942–973. PDF
  • 20. J. Hu and X. Zhang, On a class of implicit-explicit Runge Kutta schemes for stiff kinetic equations preserving the Navier-Stokes limit, Journal of Scientific Computing, (2017) 73: 797–818. PDF
  • 19. W. Huang, K. Gallivan and X. Zhang, Solving PhaseLift by low-rank Riemannian optimization methods for complex semidefinite constraints, SIAM Journal on Scientific Computing, 39-5 (2017), pp. B840–B859. Code PDF
  • 18. X. Zhang, On positivity-preserving high order discontinuous Galerkin schemes for compressible Navier-Stokes equations, Journal of Computational Physics, 328 (2017): 301–343. DOI PDF
  • 17. X. Zhang, A curved boundary treatment for discontinuous Galerkin schemes solving time dependent problems, Journal of Computational Physics, 308 (2016): 153–170. DOI PDF
  • 16. X. Cai, X. Zhang and J. Qiu, Positivity-preserving high order finite volume HWENO schemes for compressible Euler equations, Journal of Scientific Computing, (2016) 68: 464. DOI PDF
  • 15. X. Zhang and S. Tan, A simple and accurate discontinuous Galerkin scheme for modeling scalar-wave propagation in media with curved interfaces, GEOPHYSICS Mar 2015, Vol. 80, No. 2, pp. T83–T89. DOI PDF
  • 14. L. Demanet and X. Zhang, Eventual linear convergence of the Douglas Rachford iteration for basis pursuit, Mathematics of Computation 85 (2016), 209–238. DOI PDF
  • 13. Y. Xing and X. Zhang, Positivity-preserving well-balanced discontinuous Galerkin methods for the shallow water equations on unstructured triangular meshes, Journal of Scientific Computing, v57 (2013), pp. 19–41. DOI PDF
  • 12. Y. Zhang, X. Zhang and C.-W. Shu, Maximum-principle-satisfying second order discontinuous Galerkin schemes for convection-diffusion equations on triangular meshes, Journal of Computational Physics, v234 (2013), pp. 295–316. DOI PDF
  • 11. X. Zhang, Y.-Y. Liu and C.-W. Shu, Maximum-principle-satisfying high order finite volume WENO schemes for convection-diffusion equations, SIAM Journal on Scientific Computing, v34 (2012), pp. A627–A658. DOI PDF
  • 10. X. Zhang and C.-W. Shu, Positivity-preserving high order finite difference WENO schemes for compressible Euler equations, Journal of Computational Physics, v231 (2012), pp. 2245–2258. DOI PDF
  • 9. X. Zhang and C.-W. Shu, A minimum entropy principle of high order schemes for gas dynamics equations, Numerische Mathematik, (2012) 121:545–563. DOI PDF
  • 8. C. Wang, X. Zhang, C.-W. Shu and J. Ning, Robust high order discontinuous Galerkin schemes for two-dimensional gaseous detonations, Journal of Computational Physics, v231 (2012), pp. 653–665. DOI PDF
  • 7. X. Zhang and C.-W. Shu, Maximum-principle-satisfying and positivity-preserving high order schemes for conservation laws: Survey and new developments, Proceedings of the Royal Society A, v467 (2011), pp. 2752–2776. DOI PDF See Appendix C in this paper for a correction to the proof of Lemma 1.
  • 6. X. Zhang and C.-W. Shu, Positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms, Journal of Computational Physics, v230 (2011), pp. 1238–1248. DOI PDF
  • 5. X. Zhang, Y. Xia and C.-W. Shu, Maximum-principle-satisfying and positivity-preserving high order discontinuous Galerkin schemes for conservation laws on triangular meshes, Journal of Scientific Computing, v50 (2012), pp. 29–62. DOI PDF
  • 4. Y. Xing, X. Zhang and C.-W. Shu, Positivity preserving high order well balanced discontinuous Galerkin methods for the shallow water equations, Advances in Water Resources, v33 (2010), pp. 1476–1493. DOI PDF
  • 3. X. Zhang and C.-W. Shu, On positivity preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes, Journal of Computational Physics, v229 (2010), pp. 8918–8934. DOI PDF
  • 2. X. Zhang and C.-W. Shu, On maximum-principle-satisfying high order schemes for scalar conservation laws, Journal of Computational Physics, v229 (2010), pp. 3091–3120. DOI PDF See Appendix C in this paper for a correction to the proof of Lemma 2.4.
  • 1. X. Zhang and C.-W. Shu, A genuinely high order total variation diminishing scheme for one-dimensional scalar conservation laws, SIAM Journal on Numerical Analysis, Volume 48, Issue 2 (2010), pp. 772–795. DOI PDF
Publications in Refereed Book Chapters and Conference Proceedings
  • 5. X. Zhang, Recent Progress on Qk Spectral Element Method: Accuracy, Monotonicity and Applications, In: Chun, S., Jung, JH., Park, EJ., Shen, J. (eds) Spectral and High-Order Methods for Partial Differential Equations ICOSAHOM 2023. Lecture Notes in Computational Science and Engineering, vol 142. Springer, Cham. (2025), pp 113–137. PDF DOI
  • 4. Z. Xu and X. Zhang, Bound-preserving high order schemes, Volume 18, Handbook of Numerical Methods for Hyperbolic Problems: Applied and Modern Issues, R. Abgrall and C.-W. Shu, Editors, North-Holland, Elsevier, Amsterdam, 2017, pp. 81–102. PDF
  • 3. W. Huang, K. A. Gallivan, X. Zhang, Solving PhaseLift by Low-rank Riemannian Optimization Methods, The International Conference on Computational Science 2016, ICCS 2016, San Diego, California, USA. Procedia Computer Science, Volume 80, 2016, Pages 1125–1134. DOI
  • 2. X. Zhang and S. Tan, A simple and accurate discontinuous Galerkin scheme for modeling scalar-wave propagation in media with curved interfaces, in Proc. SEG annual meeting, Denver, October 2014. DOI
  • 1. M. Leinonen, R. J. Hewett, X. Zhang, L. Ying, L. Demanet, High-dimensional wave atoms and compression of seismic datasets, in Proc. SEG annual meeting, Houston, September 2013. DOI PDF
Ph.D. Students Theses